Skip to main content
Log in

Inflammatory metabolites in exhaled breath condensate characterize the obese respiratory phenotype

  • Short Communication
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In humans, obesity plays a critical role in pulmonary inflammation, and is an important risk factor for the development of several inflammatory respiratory diseases. Therefore, understanding the mechanisms that generate mediators in the setting of obesity may help to recognize the link between obesity and chronic respiratory diseases, like the increased incidence and severity of asthma in obese individuals. NMR spectroscopy of exhaled breath condensate (EBC, a non-invasive matrix to access the lung epithelial lining fluid) can unambiguously identify biomarkers characterizing different pulmonary physiopathological states. In this study we aimed at verifying if NMR-based metabolomics of EBC, combined with orthogonal projections to latent structures-discriminant analysis, could possibly recognize specific biomarkers to map the obese metabolic respiratory phenotype. Obese and lean control subjects could be distinguished in a statistical model presenting high quality parameters (R2 = 0.904 and Q2 = 0.871). Identified airway metabolites linked to the inflammation processes demonstrate that obesity constitutes a specific inflammatory metabolic phenotype (metabotype). It is concluded that the noninvasive EBC matrix is suitable to selectively investigate the obesity-related lung inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Calvani, R., Miccheli, A., Capuani, G., Tomassini Miccheli, A., Puccetti, C., Delfini, M., et al. (2010). Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. International Journal of Obesity, 34, 1095–1098.

    Article  CAS  PubMed  Google Scholar 

  • Carraro, S., Rezzi, S., Reniero, F., Héberger, K., Giordano, G., Zanconato, S., et al. (2007). Metabolomics applied to exhaled breath condensate in childhood asthma. American Journal of Respiratory and Critical Care Medicine, 175, 986–990.

    Article  CAS  PubMed  Google Scholar 

  • de Laurentiis, G., Paris, D., Melck, D., Maniscalco, M., Marsico, S., Corso, G., et al. (2008). Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. European Respiratory Journal, 32, 1175–1183.

    Article  PubMed  Google Scholar 

  • de Laurentiis, G., Paris, D., Melck, D., Montuschi, P., Maniscalco, M., Bianco, A., et al. (2013). Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. Journal of Proteome Research, 12, 1502–1511.

    Article  PubMed  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., & Wold, S. (2006). Multi- and megavariate data analysis. Part I: Basic principles and applications (2nd ed.). Umeå: Umetrics AB.

    Google Scholar 

  • Franssen, F. M., O’Donnell, D. E., Goossens, G. H., Blaak, E. E., & Schols, A. M. (2008). Obesity and the lung: 5. Obesity and COPD. Thorax, 63, 1110–1117.

    Article  CAS  PubMed  Google Scholar 

  • Human Metabolome Database. (2015). www.hmdb.ca/metabolites/HMDB00142.

  • Jensen, P. R., Peitersen, T., Karlsson, M., In’t Zandt, R., Gisselsson, A., Hansson, G., et al. (2009). Tissue-specific short chain fatty acid metabolism and slow metabolic recovery after ischemia from hyperpolarized NMR in vivo. The Journal of biological chemistry, 284, 36077–36082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konter, J., Baez, E., & Summer, R. S. (2013). Obesity: “priming” the lung for injury. Pulmonary Pharmacology & Therapeutics, 26, 427–429.

    Article  CAS  Google Scholar 

  • Kovacic, P., & Somanathan, R. (2009). Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants. Reviews of Environmental Contamination and Toxicology, 201, 41–69.

    CAS  PubMed  Google Scholar 

  • Luster, A. D., Alon, R., & von Andrian, U. H. (2005). Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 6, 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  • Mancuso, P. (2010). Obesity and lung inflammation. Journal of Applied Physiology (1985), 108, 722–728.

    Article  Google Scholar 

  • Montuschi, P., Paris, D., Melck, D., Lucidi, V., Ciabattoni, G., Raia, V., et al. (2012). NMR spectroscopy metabolomic profiling of exhaled breath condensate in patients with stable and unstable cystic fibrosis. Thorax, 67, 222–228.

    Article  PubMed  Google Scholar 

  • Montuschi, P., Paris, D., Montella, S., Melck, D., Mirra, V., Santini, G., et al. (2014). Nuclear magnetic resonance-based metabolomics discriminates primary ciliary dyskinesia from cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 190, 229–233.

    Article  PubMed  Google Scholar 

  • Motta, A., Paris, D., D’Amato, M., Melck, D., Calabrese, C., Vitale, C., et al. (2014). NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J Proteome Research, 13, 6107–6120.

    Article  CAS  Google Scholar 

  • Persoz, C., Achard, S., Momas, I., & Seta, N. (2012). Inflammatory response modulation of airway epithelial cells exposed to formaldehyde. Toxicology Letters, 211, 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Salome, C. M., King, G. G., & Berend, N. (2010). Physiology of obesity and effects on lung function. Journal of Applied Physiology (1985), 108, 206–211.

    Article  Google Scholar 

  • Sutherland, E. R. (2014). Linking obesity and asthma. Annals of the New York Academy of Sciences, 1311, 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., et al. (2013). Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 496, 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolak, J. E., Esther, C. R, Jr, & O’Connell, T. M. (2009). Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers, 14, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank patients for their contribution to the study.

Conflict of interest

All authors declare that they have no conflict of interest.

Compliance with Ethical Requirements

All institutional, national and international ethical guidelines for the patients were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Motta.

Additional information

Debora Paris, Mauro Maniscalco, and Dominique Melck contributed equally to this work.

Matteo Sofia passed away untimely on September 17, 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, D., Maniscalco, M., Melck, D. et al. Inflammatory metabolites in exhaled breath condensate characterize the obese respiratory phenotype. Metabolomics 11, 1934–1939 (2015). https://doi.org/10.1007/s11306-015-0805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0805-8

Keywords

Navigation