Skip to main content
Log in

A class of multidimensional IRT models for testing unidimensionality and clustering items

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We illustrate a class of multidimensional item response theory models in which the items are allowed to have different discriminating power and the latent traits are represented through a vector having a discrete distribution. We also show how the hypothesis of unidimensionality may be tested against a specific bidimensional alternative by using a likelihood ratio statistic between two nested models in this class. For this aim, we also derive an asymptotically equivalent Wald test statistic which is faster to compute. Moreover, we propose a hierarchical clustering algorithm which can be used, when the dimensionality of the latent structure is completely unknown, for dividing items into groups referred to different latent traits. The approach is illustrated through a simulation study and an application to a dataset collected within the National Assessment of Educational Progress, 1996.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov & F. Csaki (eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.

  • Andersen, E.B. (1973). Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk Forlag.

  • Bartolucci, F., & Forcina, A. (2001). Analysis of capture-recapture data with a Rasch-type model allowing for conditional dependence and multidimensionality. Biometrics, 57, 714–719.

    Article  PubMed  Google Scholar 

  • Bartolucci, F., & Forcina, A. (2005). Likelihood inference on the underlying structure of IRT models. Psychometrika, 70, 31–43.

    Article  Google Scholar 

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F.M. Lord & M.R. Novick (eds.), Statistical theories of mental test scores (pp. 395–379). Reading, MA: Addison-Wesley.

  • Burnham, K.P., & Anderson, D.R. (2002), Model selection and multi-model inference: A practical information-theoretic approach (2nd ed.), New York: Springer-Verlag.

  • Carstensen, C.H., and Rost, J. (2001). MULTIRA (version 1.63) [Computer software and manual]. Retrived from http://www.multira.de.

  • Christensen, K.B., & Bjorner, J. B. (2003). SAS macros for Rasch based latent variable modelling (Research Report No. 03/13). Department of Biostatistics, University of Copenhagen.

  • Christensen, K.B., Bjorner, J.B., Kreiner, S., & Petersen, J.H. (2002). Testing unidimensionality in polytomous Rasch models. Psychometrika, 67, 563–574.

    Article  Google Scholar 

  • de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183–196.

    Article  Google Scholar 

  • Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–18.

    Google Scholar 

  • Embretson, S.E. (1996). Item response theory models and spurious interaction effects in factorial ANOVA designs. Applied Psychological Measurement, 20, 201–212.

    Article  Google Scholar 

  • Forcina, A., & Bartolucci, F. (2004). Modelling quality of life variables with non-parametric mixtures. Environmetrics, 15, 519–528.

    Article  Google Scholar 

  • Formann, A.K. (1995). Linear logistic latent class analysis and the Rasch model. In G.H. Fischer, & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 239–255). New York: Springer-Verlag.

  • Glas, C.A.W. (1989). Contributions to estimating and testing Rasch models. Doctoral thesis. Enschede: University of Twente.

  • Glas, C.A.W., & Verhelst, N.D. (1995). Testing the Rasch model. In G.H. Fischer, & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 69–75). New York: Springer-Verlag.

  • Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.

    Article  Google Scholar 

  • Hardouin, J.B., & Mesbah, M. (2004). Clustering binary variables in subscales using an extended Rasch model and Akaike information criterion. Communications in Statistics. Theory and Methods, 33, 1277–1294.

    Article  Google Scholar 

  • Hoijtink, H., & Vollema, M. (2003). Contemporary extensions of the Rasch model. Quality & Quantity, 37, 263–276.

    Article  Google Scholar 

  • Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245.

    Article  Google Scholar 

  • Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 147–176.

    Article  Google Scholar 

  • Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters. Annals of Mathematical Statistics, 27, 887–906.

    Article  Google Scholar 

  • Kreiner, S., & Christensen, K.B. (2004). Analysis of local dependence and multidimensionality in graphical loglinear Rasch models, Communications in Statistics: Theory and Methods, 33, 1239–1276.

    Article  Google Scholar 

  • Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.

  • Lindsay, B., Clogg, C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107.

    Article  Google Scholar 

  • Magidson, J., & Vermunt, J.K. (2001). Latent class factor and cluster models, bi-plots, and related graphical displays. Sociological Methodology, 31, 223–264.

    Article  Google Scholar 

  • Martin-Löf, P. (1973). Statistiska modeller. Anteckningar fr{å}n seminarier las{å}ret 1969–1970, utarbetade av Rolf Sundberg. Obetydligt ändrat nytryck, October 1973. Stockholm: Institütet för Försäkringsmatemetik och Matematisk Statistisk vid Stockholms Universitet.

  • McKinley, R.L., & Reckase, M.D. (1982). The use of the general Rasch model with multidimensional item response data. Iowa City, IA: American College Testing.

  • Molenaar, I.W. (1983). Some improved diagnostics for failure of the Rasch model. Psychometrika, 48, 49–72.

    Article  Google Scholar 

  • Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability, 4, 321–333.

  • Samejima, F. (1996). Evaluation of mathematical models for ordered polychotomous responses. Behaviormetrika, 23, 17–35.

    Article  Google Scholar 

  • Stegelmann, W. (1983). Expanding the Rasch model to a general model having more than one dimension. Psychometrika, 48, 259–267.

    Article  Google Scholar 

  • Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175–186.

    Article  Google Scholar 

  • Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 23–30.

    Google Scholar 

  • van Abswoude, A.A.H., van der Ark, L.A., & Sijtsma, K. (2004). A comparative study of test data dimensionality procedures under nonparametric IRT models. Applied Psychological Measurement, 28, 3–24.

    Article  Google Scholar 

  • van den Wollenberg, A.L. (1979). The Rasch model and time limit tests. Doctoral thesis. Nijmegen: University of Nijmegen.

  • van den Wollenberg, A.L. (1982). Two new test statistics for the Rasch model. Psychometrika, 47, 123–140.

    Article  Google Scholar 

  • Verhelst, N.D. (2001). Testing the unidimensionality assumption of the Rasch model. Methods of Psychological Research Online, 6, 231–271.

    Google Scholar 

  • Vermunt, J.K. (2001). The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Applied Psychological Measurement, 25, 283–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bartolucci.

Additional information

The author would like to thank the Editor, an Associate Editor and three anonymous referees for stimulating comments. I also thank L. Scaccia, F. Pennoni and M. Lupparelli for having done part of the simulations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolucci, F. A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika 72, 141–157 (2007). https://doi.org/10.1007/s11336-005-1376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-005-1376-9

Key words

Navigation