Skip to main content
Log in

A Network Approach for Evaluating Coherence in Multivariate Systems: An Application to Psychophysiological Emotion Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We present an approach for evaluating coherence in multivariate systems that considers all the variables simultaneously. We operationalize the multivariate system as a network and define coherence as the efficiency with which a signal is transmitted throughout the network. We illustrate this approach with time series data from 15 psychophysiological signals representing individuals’ moment-by-moment emotional reactions to emotional films. First, we summarize the time series through nonparametric Receiver Operating Characteristic (ROC) curves. Second, we use Spearman rank correlations to calculate relationships between each pair of variables. Third, based on the obtained associations, we construct a network using the variables as nodes. Finally, we examine signal transmission through all the nodes in the network. Our results indicate that the network consisting of the 15 psychophysiological signals has a small-world structure, with three clusters of variables and strong within-cluster connections. This structure supports an effective signal transmission across the entire network. When compared across experimental conditions, our results indicate that coherence is relatively stronger for intense emotional stimuli than for neutral stimuli. These findings are discussed in relation to multivariate methods and emotion theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, R., Jeong, H., & Barabási, A.-L. (1999). Diameter of the world–wide web. Nature, 401, 130–131.

    Article  Google Scholar 

  • Amaral, L.A.N., Diaz–Guilera, A., Moreira, A.A., Goldberger, A.L., & Lipsitz, L.A. (2004). Emergence of complex dynamics in a simple model of signaling network. Proceedings of the National Academy of Sciences, 101, 155551–155555.

    Article  Google Scholar 

  • Boker, S.M., Xu, M., Rotondo, J.L., & King, K. (2002). Windowed cross-correlation and peak picking for the analysis of variability in the association between behavioral time series. Psychological Methods, 7, 338–355.

    Article  PubMed  Google Scholar 

  • Brillinger, D.R. (2001). Does anyone know when the correlation coefficient is useful? A study of the times of extreme river flows. Technometrics, 43, 266–273.

    Article  Google Scholar 

  • Browne, M.W., & Nesselroade, J.R. (2005). Representing psychological processes with dynamic factor models: some promising uses and extensions of ARMA time series models. In A. Maydeu-Olivares & J.J. McArdle (Eds.), Advances in psychometrics: a Festschrift to Roderick P. McDonald (pp. 415–451). Mahwah: Erlbaum.

    Google Scholar 

  • Cattell, R.B., Cattell, A.K.S., & Rhymer, R.M. (1947). P-technique demonstrated in determining psychophysical source traits in a normal individual. Psychometrika, 12, 267–288.

    Article  PubMed  Google Scholar 

  • Ekman, P. (1972). Universals and cultural differences in facial expressions of emotion. In J. Cole (Ed.), Nebraska symposium on motivation (pp. 207–282). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.

    Article  Google Scholar 

  • Ekman, P., & Friesen, W.V. (1978). The facial action coding system. Palo Alto: Consulting Psychologists Press.

    Google Scholar 

  • Feldman-Barrett, L. (2006). Are emotions natural kinds? Perspectives in Psychological Science, 1, 28–58.

    Article  Google Scholar 

  • Ferrer, E., & Nesselroade, J.R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344–360.

    Article  PubMed  Google Scholar 

  • Gottman, J.M. (1990). Time-series analysis applied to physiological data. In J.T. Cacioppo & L.G. Tassinary (Eds.), Principles of psychophysiology: physical, social, and inferential elements (pp. 754–774). New York: Cambridge University Press.

    Google Scholar 

  • Gottman, J.M., & Levenson, R.W. (1985). A valid procedure for obtaining self-report of affect in marital interaction. Journal of Consulting and Clinical Psychology, 53, 151–160.

    Article  PubMed  Google Scholar 

  • Hamaker, E.L., Dolan, C.V., & Molenaar, P.C.M. (2005). Statistical modeling of the individual: rationale and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40, 207–233.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Hsieh, F., & Turnbull, B.W. (1996). Non- and semi-parametric estimation of the receiver operating characteristics (ROC) curve. Annals of Statistics, 24, 25–40.

    Article  Google Scholar 

  • Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–254.

    Article  PubMed  Google Scholar 

  • Klinkner, K.L., Shalizi, C.R., & Camperi, M.F. (2006). Measuring shared information and coordinated activity in neuronal networks. In Y. Weiss, B. Scholkopf, & J.C. Platt (Eds.), Advances in neural information processing systems (pp. 667–674). Cambridge: MIT Press.

    Google Scholar 

  • Lazarus, R.S. (1991). Emotion and adaptation. London: Oxford University Press.

    Google Scholar 

  • Levenson, R.W. (1994). Human emotions: a functional view. In P. Ekman & R.J. Davidson (Eds.), The nature of emotion: fundamental questions (pp. 123–126). New York: Oxford University Press.

    Google Scholar 

  • Levenson, R.W. (2003). Blood, sweat, and fears: the autonomic architecture of emotion. In P. Ekman, J.J. Campos, R.J. Davidson, & F.B.M. de Waal (Eds.), Emotions inside out (pp. 348–366). New York: The New York Academy of Sciences.

    Google Scholar 

  • Levenson, R.W., & Gottman, J.M. (1983). Marital interaction: physiological linkage and affective exchange. Journal of Personality and Social Psychology, 45, 587–597.

    Article  PubMed  Google Scholar 

  • Matsumoto, D., Nezlek, J.B., & Koopmann, B. (2007). Evidence for universality in phenomenological emotion response system coherence. Emotion, 7, 57–67.

    Article  PubMed  Google Scholar 

  • Mauss, I.B., Evers, C., Wilhelm, F.H., & Gross, J.J. (2006). How to bite your tongue without blowing your top: implicit evaluation of emotion regulation predicts affective responding to anger provocation. Personality and Social Psychology Bulletin, 32, 389–602.

    Article  Google Scholar 

  • Mauss, I.B., Levenson, R.W., McCarter, L., Wilhelm, F.H., & Gross, J.J. (2005). The tie that binds? Coherence among emotional experience, behavior, and autonomic physiology. Emotion, 5, 175–190.

    Article  PubMed  Google Scholar 

  • McAssey, M., Hsieh, F., & Ferrer, E. (2010). Optimal and robust design for efficient system-wide synchronization in networks of randomly-wired neuron-nodes. Statistics and Its Interface, 3, 159–168.

    Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.

    Google Scholar 

  • Molenaar, P.C.M. (2004). A manifesto on psychology as idiographic science: bringing the person back into scientific psychology—this time forever. Measurement, 2, 201–218.

    Google Scholar 

  • Nesselroade, J.R., & Molenaar, P.C.M. (1999). Pooling lagged covariance structures based on short, multivariate time-series for dynamic factor analysis. In R.H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 224–251). Newbury Park: Sage.

    Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Priestley, M.B. (1988). Nonlinear and non-stationary time series. New York: Academic Press.

    Google Scholar 

  • Quian Quiroga, R., Kraskov, A., Kreuz, T., & Grassberger, P. (2002). Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Physical Review E, 65, 041903-14.

    Article  Google Scholar 

  • Rohatgi, V.K. (1984). Statistical inference. Mineola: Dover Publications.

    Google Scholar 

  • Rosenberg, E.L., & Ekman, P. (1994). Coherence between expressive and experiential systems in emotion. Cognition & Emotion, 8, 201–229.

    Article  Google Scholar 

  • Rottenberg, J., Ray, R.R., & Gross, J.J. (2007). Emotion elicitation using films. In J.A. Coan & J.J.B. Allen (Eds.), The handbook of emotion elicitation and assessment (pp. 9–28). New York: Oxford University Press.

    Google Scholar 

  • Scherer, K.R. (1984). On the nature and function of emotion: a component process approach. In K.R. Scherer & P. Ekman (Eds.), Approaches to emotion (pp. 293–317). Hillsdale: Erlbaum.

    Google Scholar 

  • Schneidman, E., Still, S., Berry, M.J., & Bialek, W. (2003). Network information and connected correlations. Physical Review Letters, 91, 238701-4.

    Article  Google Scholar 

  • Swets, J.A. (1996). Signal detection theory and ROC analysis in psychology and diagnostics: collected papers. Mahwah: Erlbaum.

    Google Scholar 

  • Tomkins, S.S. (1962). Affect, imagery, consciousness: I. The positive affects. Oxford: Springer.

    Google Scholar 

  • Tsonis, P.A., & Tsonis, A.A. (2004). A “small-world” network hypothesis for memory and dreams. Perspectives in Biology and Medicine, 47, 176–180.

    Article  PubMed  Google Scholar 

  • van der Maas, H.L.J., Dolan, C.V., Grasman, R.P.P., Wicherts, J.M., Huizenga, H.M., & Raijmakers, M.E.J. (2006). A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychological Review, 113, 842–861.

    Article  PubMed  Google Scholar 

  • Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  PubMed  Google Scholar 

  • Watts, D.J. (1999). Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Ferrer.

Additional information

This study was supported in part by grants from the National Science Foundation (BCS-05-27766 and BCS-08-27021) and NIH-NINDS (R01 NS057146-01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, F., Ferrer, E., Chen, S. et al. A Network Approach for Evaluating Coherence in Multivariate Systems: An Application to Psychophysiological Emotion Data. Psychometrika 76, 124–152 (2011). https://doi.org/10.1007/s11336-010-9194-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-010-9194-0

Keywords

Navigation