Skip to main content
Log in

A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate ordinal items. Time-dependent latent variables are linked with an autoregressive model. Simulation results have shown composite likelihood estimators to have a small amount of bias and mean square error and as such they are feasible alternatives to full maximum likelihood. Model selection criteria developed for composite likelihood estimation are used in the applications. Furthermore, lower-order residuals are used as measures-of-fit for the selected models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Arnold, B.C., & Strauss, D. (1991). Pseudolikelihood estimation: some examples. Sankya: The Indian Journal of Statistics, 53, 233–243.

    Google Scholar 

  • Azzalini, A. (1983). Maximum likelihood estimation of order m for stationary stochastic processes. Biometrika, 70, 381–387.

    Article  Google Scholar 

  • Bartholomew, D.J., & Leung, S.O. (2002). A goodness-of-fit test for sparse 2p contingency tables. British Journal of Mathematical & Statistical Psychology, 55, 1–15.

    Article  Google Scholar 

  • Besag, J.E. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society, Series B, 36, 192–236.

    Google Scholar 

  • Cagnone, S., Moustaki, I., & Vasdekis, V. (2009). Latent variable models for multivariate longitudinal ordinal responses. British Journal of Mathematical & Statistical Psychology, 62, 401–415.

    Article  Google Scholar 

  • Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75, 581–612.

    Article  Google Scholar 

  • Cai, L., Maydeu-Olivares, A., Coffman, D.L., & Thissen, D. (2006). Limited information goodness-of-fit testing of item response theory models for sparse 2p tables. British Journal of Mathematical & Statistical Psychology, 59, 173–194.

    Article  Google Scholar 

  • Cox, D.R. (1975). Partial likelihood. Biometrika, 62, 269–274.

    Article  Google Scholar 

  • Cox, D.R., & Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika, 91, 729–737.

    Article  Google Scholar 

  • Dunson, B. (2003). Dynamic latent trait models for multidimensional longitudinal data. Journal of the American Statistical Association, 98, 555–563.

    Article  Google Scholar 

  • Feddag, M., & Bacci, S. (2009). Pairwise likelihood for the longitudinal mixed Rasch model. Computational Statistics & Data Analysis, 53, 1027–1037.

    Article  Google Scholar 

  • Geys, H., Molenberghs, G., & Ryan, L.M. (1999). Pseudolikelihood modeling of multivariate outcomes in developmental toxicology. Journal of the American Statistical Association, 94, 734–745.

    Google Scholar 

  • Gibbons, R.D., & Hedeker, D. (1992). Full-information item bifactor analysis. Psychometrika, 57, 423–436.

    Article  Google Scholar 

  • Heagerty, P., & Lele, S. (1998). A composite likelihood approach to binary spatial data. Journal of the American Statistical Association, 93, 1099–1111.

    Google Scholar 

  • Huber, P., Ronchetti, E., & Victoria-Feser, M.-P. (2004). Estimation of generalized linear latent variable models. Journal of the Royal Statistical Society, Series B, 66, 893–908.

    Article  Google Scholar 

  • Joe, H., & Maydeu-Olivares, A. (2010). A general family of limited information goodness-of-fit statistics for multinomial data. Psychometrika, 75, 393–419.

    Article  Google Scholar 

  • Jöreskog, K.G., & Moustaki, I. (2001). Factor analysis of ordinal variables: a comparison of three approaches. Multivariate Behavioral Research, 36, 347–387.

    Article  Google Scholar 

  • Lindsay, B. (1988). Composite likelihood methods. In N.U. Prabhu (Ed.), Statistical inference from stochastic processes (pp. 221–239). Providence: Am. Math. Soc.

    Chapter  Google Scholar 

  • Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226–233.

    Google Scholar 

  • Maydeu-Olivares, A., & Joe, H. (2005). Limited and full-information estimation and goodness-of-fit testing in 2n contingency tables: a unified framework. Journal of the American Statistical Association, 100, 1009–1020.

    Article  Google Scholar 

  • Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713–732.

    Article  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301–323.

    Article  Google Scholar 

  • Reiser, M. (1996). Analysis of residuals for the multinomial item response model. Psychometrika, 61, 509–528.

    Article  Google Scholar 

  • Ronchetti, E. (1997). Robustness aspects of model choice. Statistica Sinica, 7, 327–338.

    Google Scholar 

  • Schilling, S., & Bock, R. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70, 533–555.

    Google Scholar 

  • Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. Journal of the Royal Statistical Society, Series B, 39, 44–47.

    Google Scholar 

  • Straud, A.H., & Sechrest, D. (1966). Gaussian quadrature formulas. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Tsonaka, R., & Moustaki, I. (2007). Parameter constraints in generalized linear latent variable models. Computational Statistics & Data Analysis, 51, 4164–4177.

    Article  Google Scholar 

  • Varin, C. (2008). On composite marginal likelihoods. Advances in Statistical Analysis, 92, 1–28.

    Article  Google Scholar 

  • Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 5–42.

    Google Scholar 

  • Varin, C., & Vidoni, P. (2005). A note on composite likelihood inference and model selection. Biometrika, 92, 519–528.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments which improved the paper a lot. This research was partially funded by the Basic Research Funding Program 2009–2010 of the Athens University of Economics and Business and by grants from the Italian Ministry of University and Research (MIUR): PRIN2008 “Latent structure analysis: New boundaries in statistical methods and models.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis G. S. Vasdekis.

Appendix

Appendix

1.1 A.1 Computational Details

The first and second derivatives of the densities involved in the calculation of the E-step of Section 2.2 and the standard errors of Section 2.3 are presented. The computational issues that emerge involve both the log-likelihood of the univariate probabilities of response and that of the latent variables. The first issue considers the first and the second derivative of \(\log (\gamma_{it}^{(s)}-\gamma_{it}^{(s-1)})\). It is easily seen that

$$\frac{\partial\log(\gamma_{it}^{(s)}-\gamma_{it}^{(s-1)})}{\partial\theta_k}=\frac{1}{\gamma_{it}^{(s)}-\gamma _{it}^{(s-1)}} \biggl(\frac{\partial\gamma_{it}^{(s)}}{\partial \theta_k}-\frac{\partial\gamma_{it}^{(s-1)}}{\partial\theta_k} \biggr),$$

where

The second derivative of \(\log(\gamma_{it}^{(s)}-\gamma _{it}^{(s-1)})\) is,

where

$$\frac{\partial^2\gamma_{it}^{(s)}}{\partial\theta_k\partial\theta _l}= \frac{\partial\gamma_{it}^{(s)}}{\partial\theta_l} \bigl (1-2\gamma_{it}^{(s)}\bigr)\frac{\partial\eta_{it}^{(s)}}{\partial\theta_k}.$$

Regarding the log-likelihood of the latent variables, two cases will be discriminated: the first case involves two time-dependent latent variables and two item random effects (z t ,z t,u i ,u i), when, for example, a pair (y it ,y it) is considered; whereas, the other case involves one time-dependent latent variable and two item random effects (z t ,u i ,u i) corresponding to a pair (y it ,y it ). The covariance matrix of z t and z t is

$$\Sigma=\left(\matrix{\phi^{2(t-1)}\sigma_1^2+A_t^* & \phi^{t+t'-2}\sigma _1^2+\phi^{t'-t}A_t^* \cr\noalign{\vspace*{2pt}}\phi^{t+t'-2}\sigma_1^2+\phi^{t'-t}A_t^* &\phi^{2(t'-1)}\sigma_1^2+A_{t'}^*}\right)$$

with

$$A_t=\sum_{k=0}^{t-2}\phi^{2k},\qquad A_t^*=I(t\geq2)A_t.$$

Therefore, the logarithm of the joint density of (z t ,z t,u i ,u i) is

where \(\omega_{11}=\phi^{2(t'-1)}\sigma_{1}^{2}+A^{*}_{t'}\), \(\omega _{12}=\phi^{t+t'-2}\sigma_{1}^{2}+\phi^{t'-t}A_{t}^{*}\), \(\omega_{22}=\phi ^{2(t-1)}\sigma_{1}^{2}+A_{t}^{*}\). With respect to the parameters, ϕ or \(\sigma_{1}^{2}\), the derivatives of the logarithm of the joint density, are

$${\partial\log h(z_t,z_{t'},u_i,u_{i'})\over\partial\theta_k}=-{1\over2} {{\partial|\Sigma|\over \partial \theta_k}\over|\Sigma|}-{1\over2} \bigl[K_{\theta_k}^{\omega_{11}}z_t^2 -2K_{\theta_k}^{\omega _{12}}z_tz_{t'}+K_{\theta_k}^{\omega_{22}}z_{t'}^2\bigr],\quad \theta_k=\sigma_1^2,\phi $$

and

$$K^\alpha_{\theta_k}={{\partial\alpha\over\partial \theta_k}|\Sigma|-\alpha{\partial|\Sigma|\over\partial \theta_k}\over|\Sigma|^2},\quad \alpha=\omega_{11},\omega_{12},\omega_{22}.$$

The first derivative with respect to the parameters \(\sigma^{2}_{uk}\) is

$${\partial\log h(z_t,z_{t'},u_i,u_{i'})\over\partial\sigma^2_{uk}}-{1\over2\sigma_{uk}^2}-{u_k^2\over2\sigma_{uk}^2},\quad k=i,i'.$$

The second derivative with respect to θ k and θ l :

$${\partial^2\log h(z_t,z_{t'},u_i,u_{i'})\over\partial\theta_k\partial\theta_l}=-{1\over2} {{\partial^2|\Sigma|\over\partial\theta_k\partial \theta_l}|\Sigma|-{\partial|\Sigma|\over\partial\theta_k}{\partial|\Sigma|\over\partial\theta_l}\over|\Sigma|^2}-{1\over2} \bigl[L_{\theta _k,\theta_l}^{\omega_{11}} z_t^2-2L_{\theta_k,\theta_l}^{\omega _{12}}z_tz_{t'}+L_{\theta_k,\theta_l}^{\omega_{22}}z_{t'}^2\bigr]$$

where \(\theta_{k},\theta_{l}=\sigma_{1}^{2},\phi\) and

$$L^\alpha_{\theta_k,\theta_l}={ ({\partial^2\alpha\over \partial\theta_k\partial\theta_l}|\Sigma|+{\partial \alpha\over\partial\theta_k} {\partial|\Sigma|\over\partial \theta_l}-{\partial\alpha\over\partial\theta_l} {\partial|\Sigma|\over\partial\theta_k}-\alpha{\partial^2|\Sigma|\over\partial\theta_k\partial\theta_l} )|\Sigma|^2-2|\Sigma|{\partial|\Sigma|\over\partial \theta_l} ({\partial\alpha\over\partial\theta_k}|\Sigma|-\alpha{\partial|\Sigma|\over\partial\theta_k})\over|\Sigma|^4}$$

where α=ω 11,ω 12,ω 22. The second partial derivative of the logarithm of the joint density with respect to \(\sigma^{2}_{ui}\) or \(\sigma^{2}_{ui'}\) is

$${\partial^2\log h(z_t,z_{t'},u_k,u_{k'})\over\partial\sigma^2_{uk}\partial\sigma^2_{uk}}={1\over2\sigma^4_{uk}}+{u_k^2\over2\sigma^4_{uk}},\quad k=i,i'.$$

When the k indices are different, this second derivative is zero.

When the joint density of the triplet (z t ,u i ,u i) is considered, we set |Σ|=Var(z t ), and ω 11=1 and ω 12=ω 22=0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasdekis, V.G.S., Cagnone, S. & Moustaki, I. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses. Psychometrika 77, 425–441 (2012). https://doi.org/10.1007/s11336-012-9264-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-012-9264-6

Key words

Navigation