Skip to main content
Log in

A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In behavioral, biomedical, and psychological studies, structural equation models (SEMs) have been widely used for assessing relationships between latent variables. Regression-type structural models based on parametric functions are often used for such purposes. In many applications, however, parametric SEMs are not adequate to capture subtle patterns in the functions over the entire range of the predictor variable. A different but equally important limitation of traditional parametric SEMs is that they are not designed to handle mixed data types—continuous, count, ordered, and unordered categorical. This paper develops a generalized semiparametric SEM that is able to handle mixed data types and to simultaneously model different functional relationships among latent variables. A structural equation of the proposed SEM is formulated using a series of unspecified smooth functions. The Bayesian P-splines approach and Markov chain Monte Carlo methods are developed to estimate the smooth functions and the unknown parameters. Moreover, we examine the relative benefits of semiparametric modeling over parametric modeling using a Bayesian model-comparison statistic, called the complete deviance information criterion (DIC). The performance of the developed methodology is evaluated using a simulation study. To illustrate the method, we used a data set derived from the National Longitudinal Survey of Youth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Arminger, G., & Küsters, U. (1988). Latent trait models with indicators of mixed measurement level. In R. Langeheine & J. Rost (Eds.), Latent trait and latent class models (pp. 51–73). New York: Plenum.

    Chapter  Google Scholar 

  • Bartholomew, D.J., & Knott, M. (1999). Kendall’s library of statistics: Vol. 7. Latent variable models and factor analysis (2nd ed.). London: Arnold Publishers.

    Google Scholar 

  • Bentler, P.M., & Stein, J.A. (1992). Structural equation models in medical research. Statistical Methods in Medical Research, 1, 159–181.

    Article  PubMed  Google Scholar 

  • Berry, S.M., Carroll, R.J., & Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems. Journal of the American Statistical Association, 97, 160–169.

    Article  Google Scholar 

  • Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley.

    Google Scholar 

  • Cai, J.H., Song, X.Y., & Hser, Y.I. (2010). A Bayesian analysis of mixture structural equation models with non-ignorable missing responses and covariates. Statistics in Medicine, 29, 1861–1874.

    Article  PubMed  Google Scholar 

  • Cai, J.H., Song, X.Y., Lam, K.H., & Ip, H.S. (2011). A mixture of generalized latent variable models for mixed mode and heterogeneous data. Computational Statistics & Data Analysis, 55, 2889–2907.

    Article  Google Scholar 

  • Caldwell, B.M., & Bradley, R.H. (1984). Home observation for measurement of the environment. Little Rock: University of Arkansas at Little Rock, Center for Child Development and Education.

    Google Scholar 

  • Celeux, G., Forbes, F., Robert, C.P., & Titterington, D.M. (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1, 651–674.

    Article  Google Scholar 

  • Center for Human Resource Research (2004). The national longitudinal surveys NLSY user’s guide, 1979–2004. Columbus: U.S. Department of Labor, Bureau of Labor Statistics.

    Google Scholar 

  • Cowles, M.K. (1996). Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Statistics and Computing, 6, 101–111.

    Article  Google Scholar 

  • De Boor, C. (1978). A practical guide to splines. New York: Springer.

    Book  Google Scholar 

  • DiMatteo, I., Genovese, C.R., & Kass, R.E. (2001). Bayesian curve fitting with free-knot splines. Biometrika, 88, 1055–1071.

    Article  Google Scholar 

  • Dunn, L.M., & Markwardt, F. (1970). Peabody individual achievement test manual. Circle Pines: American Guidance Services.

    Google Scholar 

  • Dunson, D.B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of the Royal Statistical Society. Series B, 62, 355–366.

    Article  Google Scholar 

  • Eilers, P.H.C., & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–121.

    Article  Google Scholar 

  • Fahrmeir, L., & Raach, A. (2007). A Bayesian semiparametric latent variable model for mixed responses. Psychometrika, 72, 327–346.

    Article  Google Scholar 

  • Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman & Hall.

    Google Scholar 

  • Fox, J.P., & Glas, C.A.W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika, 68, 169–191.

    Article  Google Scholar 

  • Gelman, A., & Meng, X.L. (1998). Simulating normalizing constant: from importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185.

    Article  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  PubMed  Google Scholar 

  • Green, P.J., & Silverman, B.W. (1994). Nonparametric regression and generalized linear models: a roughness penalty approach. London: Chapman & Hall.

    Google Scholar 

  • Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97–109.

    Article  Google Scholar 

  • Huber, P., Scaillet, O., & Victoria-Feser, M.P. (2009). Assessing multivariate predictors of financial market movements: a latent factor framework for ordinal data. Annals of Applied Statistics, 3, 249–271.

    Article  Google Scholar 

  • Ibrahim, J.G., Chen, M.H., & Sinha, D. (2001). Criterion-based methods for Bayesian model assessment. Statistica Sinica, 11, 419–443.

    Google Scholar 

  • Imai, K., & van Dyk, D.A. (2005). Bayesian analysis of the multinomial probit model using marginal data augmentation. Journal of Econometrics, 124, 311–334.

    Article  Google Scholar 

  • Jara, A., Quintana, F., & San Martín, E. (2008). Linear mixed models with skew-elliptical distributions: a Bayesian approach. Computational Statistics & Data Analysis, 52, 5033–5045.

    Article  Google Scholar 

  • Jöreskog, K.G., & Moustaki, I. (2001). Factor analysis for ordinal variables: a comparison of three approaches. Multivariate Behavioral Research, 36, 347–387.

    Article  Google Scholar 

  • Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.

    Article  Google Scholar 

  • Kenny, D.A., & Judd, C.M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201–210.

    Article  Google Scholar 

  • Lang, S., & Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical Statistics, 13, 183–212.

    Article  Google Scholar 

  • Lee, S.Y. (2007). Structural equation modeling: a Bayesian approach. Chichester: Wiley.

    Book  Google Scholar 

  • Lu, Z.H., & Song, X.Y. (2012). Finite mixture varying coefficient models for analyzing longitudinal heterogeneous data. Statistics in Medicine, 31, 544–560.

    Article  PubMed  Google Scholar 

  • McCullagh, P., & Nelder, J.A. (1989). Generalized linear models. New York: Chapman & Hall.

    Google Scholar 

  • Meng, X.L. (1994). Posterior predictive p-values. The Annals of Statistics, 22, 1142–1160.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 1087–1091.

    Article  Google Scholar 

  • Moustaki, I. (1996). A latent trait and a latent class model for mixed observed variables. British Journal of Mathematical & Statistical Psychology, 49, 313–334.

    Article  Google Scholar 

  • Moustaki, I., & Victoria-Feser, M.-P. (2006). Bounded-influence robust estimation in generalized linear latent variable models. Journal of the American Statistical Association, 101, 644–653.

    Article  Google Scholar 

  • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.

    Article  Google Scholar 

  • Nylund, K.L., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Structural Equation Modeling. A Multidisciplinary Journal, 14, 535–569.

    Article  Google Scholar 

  • Owen, A.B. (2001). Empirical likelihood. Boca Raton: Chapman & Hall.

    Book  Google Scholar 

  • Pan, J.H., Song, X.Y., & Ip, H.S. (2013, in press). A Bayesian analysis of generalized latent curve mixture models. Statistics and Its Interface.

  • Panagiotelis, A., & Smith, M. (2008). Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. Journal of Econometrics, 143, 291–316.

    Article  Google Scholar 

  • Pugesek, B.H., Tomer, A., & von Eye, A. (2003). Structural equation modeling applications in ecological and evolutionary biology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Ruppert, D., Wand, M.P., & Carroll, R.J. (2003). Semiparametric regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • San Martín, E., Jara, A., Rolin, J.M., & Mouchart, M. (2011). On the Bayesian nonparametric generalization of IRT-type models. Psychometrika, 76, 385–409.

    Article  Google Scholar 

  • Sanchez, B.N., Budtz-Jorgenger, E., Ryan, L.M., & Hu, H. (2005). Structural equation models: a review with applications to environmental epidemiology. Journal of the American Statistical Association, 100, 1443–1455.

    Article  Google Scholar 

  • Schumacker, R.E. & Marcoulides, G.A. (Eds.) (1998). Interaction and nonlinear effects in structural equation models. Mahwah: Lawrence Erlbaum Associates, Publishers.

    Google Scholar 

  • Shi, J.Q., & Lee, S.Y. (2000). Latent variable model with mixed continuous and polytomous data. Journal of the Royal Statistical Society. Series B, 62, 77–87.

    Article  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: multilevel, longitudinal, and structural equation models. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Song, X.Y., & Lee, S.Y. (2007). Bayesian analysis of latent variable models with nonignorable missing outcomes from exponential family. Statistics in Medicine, 26, 681–693.

    Article  PubMed  Google Scholar 

  • Song, X.Y., Lee, S.Y., Ng, M.C.Y., So, W.Y., & Chan, J.C.N. (2007). Baysian analysis of structural equation models with multinomial variables and an application to type 2 diabetic nephropathy. Statistics in Medicine, 26, 2348–2369.

    Article  PubMed  Google Scholar 

  • Song, X.Y., & Lu, Z.H. (2010). Semiparametric latent variable models with Bayesian P-splines. Journal of Computational and Graphical Statistics, 19, 590–608.

    Article  Google Scholar 

  • Song, X.Y., & Lu, Z.H. (2012). Semiparametric transformation models with Bayesian P-splines. Statistics and Computing, 22, 1085–1098.

    Article  Google Scholar 

  • Song, X.Y., Pan, J.H., Kwok, T., Vandenput, L., Ohlsson, C., & Leung, P.C. (2010). A semiparametric Bayesian approach for structural equation models. Biometrical Journal, 52, 314–332.

    Article  PubMed  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society. Series B, 64, 583–639.

    Article  Google Scholar 

  • Spiegelhalter, D.J., Thomas, A., Best, N.G., & Lunn, D. (2003). WinBUGS user manual. Version 1.4. Cambridge: MRC Biostatistics Unit.

    Google Scholar 

  • Yang, M.G., & Dunson, D.B. (2010). Bayesian semiparametric structural equation models with latent variables. Psychometrika, 75, 675–693.

    Article  Google Scholar 

  • Yang, M.G., Dunson, D.B., & Baird, D. (2010). Semiparametric Bayes hierarchical models with mean and variance constraints. Computational Statistics & Data Analysis, 54, 2172–2186.

    Article  Google Scholar 

  • Zill, N. (1985). Behavior problem scales developed from the 1981 child health supplement to the national health interview survey. Washington: Child Trends, Inc.

    Google Scholar 

Download references

Acknowledgements

This paper is supported by the grants GRF 446609 and GRF 404711 from the Research Grant Council of the Hong Kong Special Administration Region; NSFC 11101443 from the National Natural Science Foundation of China, and the Fundamental Research Funds for the Central Universities. The last author is supported by the NIH grant R01AG031827A and 1U01HL101066. This study is also supported by the high-performance grid computing platform of Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Heng Cai.

Appendix:  The Full Conditional Distributions

Appendix:  The Full Conditional Distributions

The full conditional distributions involved in the Gibbs sampler are given as follows.

(1) The full conditional distribution of Ω: \(p(\boldsymbol{\varOmega} |\mathbf{D},\mathbf{Z}^{*},\mathbf{W},\boldsymbol{\theta}_{*})= \prod_{i=1}^{n} p(\boldsymbol{\omega}_{i}|\mathbf{d}_{i},\mathbf {z}_{i}^{*},\mathbf{w}_{i},\boldsymbol{\theta}_{*})\), and

(A.1)

(2) The full conditional distribution of W: \(p(\mathbf {W}|\mathbf{D} ,\mathbf{Z}^{*},\boldsymbol{\varOmega},\boldsymbol{\theta}_{*})=\prod_{i=1}^{n} \prod_{j=r_{3}+1}^{r_{4}} p(\mathbf{w}_{ij}|u_{ij},\allowbreak\boldsymbol{\omega }_{i}, \boldsymbol{\theta}_{*})\), and

$$ p(\mathbf{w}_{ij}|u_{ij}=l,\boldsymbol{\omega}_i,\boldsymbol{\theta} _*) \stackrel{D}{=}N \bigl[\boldsymbol{\mu}_j+\mathbf{1}_{L-1}\boldsymbol{\varLambda}_j' \boldsymbol{\omega}_i, \mathbf{I}_{L-1}\bigr]\mathrm{I}(\mathbf {w}_{ij} \in \mathbf{R}_l), $$
(A.2)

where I L−1 is an identity matrix with order L−1, and

The distribution of p(w ij |u ij ,ω i ,θ ) is a truncated multivariate normal distribution. Following Song et al. (2007), we use the following partitioning of variables to simulate observations {w ij,1,…,w ij,L−1} via Gibbs sampler. Let w ij,−l be w ij with w ij,l deleted, the distribution of w ij,l given u ij , w ij,−l , ω i , and θ is a univariate truncated normal distribution as follows:

(A.3)

(3) The full distribution of b l is

$$ p(\mathbf{b}_l|\cdot) \stackrel{D}{=}N\bigl[\mathbf{b}_l^*, \boldsymbol{\varSigma}_{bl}^*\bigr], \quad l=1,\ldots,m, $$
(A.4)

with the constraint \(\mathbf{1}_{n}'\mathbf{B}_{l}^{c} \mathbf{b}_{l}=0\), where \(\boldsymbol{\varSigma}_{bl}^{*}=({\mathbf{B}_{l}^{c}}'\mathbf {B}_{l}^{c}/\psi_{\delta}+ \mathbf{M}_{bl}/\tau_{bl})^{-1}\), \(\mathbf{b}_{l}^{*}=\boldsymbol{\varSigma}_{bl}^{*}{\mathbf {B}_{l}^{c}}'\boldsymbol{\eta}_{c}^{*}/\psi_{\delta}\), and \(\boldsymbol{\eta}_{c}^{*}=(\eta_{c1}^{*}, \ldots,\eta_{cn}^{*})'\) with

$$\eta_{ci}^*=\eta_i-\sum_{j \neq l} \sum_{k=1}^{K_{bl}} b_{jk}B_{jk}^c(c_{ij})- \sum_{j=1}^{q_2} \sum _{k=1}^{K_l} \gamma_{jk}B_{jk} \bigl(\varPhi^*(\xi_{ij})\bigr). $$

To sample an observation b l from its full conditional distribution with the constraint, we can sample an observation \(\mathbf{b}_{l}^{(\mathrm{new})}\) from \(N[\mathbf{b}_{l}^{*},\boldsymbol{\varSigma}_{bl}^{*}]\), then transform \(\mathbf{b}_{l}^{(\mathrm{new})}\) to b l as follows:

$$\mathbf{b}_l=\mathbf{b}_l^{(\mathrm{new})}-\boldsymbol{\varSigma}_{bl}^*{ \mathbf{B}_{l}^c}'\mathbf{1}_n\bigl( \mathbf{1}_n'\mathbf{B}_{l}^c \boldsymbol{\varSigma}_{bl}^*{\mathbf{B}_{l}^c}' \mathbf{1}_n\bigr)^{-1} \mathbf{1}_n' \mathbf{B}_{l}^c\mathbf{b}_l^{(\mathrm{new})}. $$

(4) The full distribution of γ l is

$$ p(\boldsymbol{\gamma}_l|\cdot) \stackrel{D}{=}N\bigl[\boldsymbol {\gamma}_l^*, \boldsymbol{\varSigma}_{\gamma l}^*\bigr], \quad l=1,\ldots,q_2, $$
(A.5)

with the constraint \(\mathbf{1}_{n}'\mathbf{B}_{l} \boldsymbol{\gamma}_{l}=0\), where \(\boldsymbol{\varSigma}_{\gamma l}^{*}=(\mathbf{B}_{l}'\mathbf {B}_{l}/\psi_{\delta}+ \mathbf{M}_{\gamma l}/\tau_{\gamma l})^{-1}\), \(\boldsymbol{\gamma}_{l}^{*}=\boldsymbol{\varSigma}_{\gamma l}^{*}\mathbf {B}_{l}'\boldsymbol{\eta}^{*}/\psi_{\delta}\), and \(\boldsymbol{\eta}^{*}=(\eta_{1}^{*}, \ldots,\eta_{n}^{*})'\) with

$$\eta_{i}^*=\eta_i-\sum_{j=1}^m \sum_{k=1}^{K_{bl}} b_{jk}B_{jk}^c(c_{ij})- \sum_{j \neq l} \sum_{k=1}^{K_l} \gamma_{jk}B_{jk}\bigl(\varPhi^*(\xi_{ij})\bigr). $$

Similar to b l , we can sample an observation \(\boldsymbol {\gamma}_{l}^{( \mathrm{new})}\) from \(N[\boldsymbol{\gamma}_{l}^{*},\boldsymbol {\varSigma}_{\gamma l}^{*}]\), then transform \(\boldsymbol{\gamma}_{l}^{(\mathrm{new})}\) to γ l as follows:

$$\boldsymbol{\gamma}_l=\boldsymbol{\gamma}_l^{(\mathrm{new})}- \boldsymbol{\varSigma}_{\gamma l}^*\mathbf{B}_{l}' \mathbf{1}_n \bigl(\mathbf{1}_n'\mathbf{B}_{l}\boldsymbol{\varSigma}_{\gamma l}^* \mathbf{B}_{l}'\mathbf{1}_n\bigr)^{-1} \mathbf{1}_n'\mathbf{B}_{l}\boldsymbol{\gamma}_l^{(\mathrm{new})}. $$

(5) The full conditional distributions of τ b and τ γ are as follows:

$$ \begin{aligned}[c] & p\bigl(\tau_{bl}^{-1}\bigl|\cdot \bigr) \stackrel{D}{=}\mathrm{Gamma} \bigl[\alpha_{b0}+K_{bl}^*/2, \beta_{b0}+\mathbf{b}_l'\mathbf{M}_{bl} \mathbf{b}_l/2\bigr], \quad l=1,\ldots,m, \\ & p\bigl(\tau_{\gamma l}^{-1}\bigl|\cdot\bigr) \stackrel {D}{=}\mathrm{Gamma}\bigl[ \alpha_{\gamma 0}+K_{l}^*/2, \beta_{\gamma0} + \boldsymbol{\gamma}_l'\mathbf{M}_{\gamma l}\boldsymbol{\gamma}_l/2 \bigr], \quad l=1,\ldots,q_2. \end{aligned} $$
(A.6)

(6) The full conditional distribution of μ is given as follows:

(A.7)
(A.8)
(A.9)

where \(\sigma_{j}^{*}=(\sigma_{j0}^{-1}+n \psi_{j}^{-1})^{-1}\), \(\mu_{j}^{*}=\sigma_{j}^{*}(n \bar{z}_{j}^{*}/\psi_{j}+\mu_{j0}/\sigma_{j0})\), with \(\bar{z}_{j}^{*}=n^{-1}\sum _{i=1}^{n} (z_{ij}^{*}-\boldsymbol{\varLambda}_{j}'\boldsymbol{\omega}_{i})\), \(\mu_{j}^{**}=\sigma_{j}^{*}(n \bar{y}_{j}/\psi_{j}+\mu_{j0}/\sigma_{j0})\) with \(\bar{y}_{j}=n^{-1}\sum_{i=1}^{n} (y_{ij}-\boldsymbol{\varLambda}_{j}'\boldsymbol{\omega}_{i})\), \(\boldsymbol{\varSigma}_{\mu j}=(n\mathbf{I}_{L-1}+\mathbf{H}_{\mu j0}^{-1})^{-1}\), \(\tilde {\boldsymbol{\mu}}_{j}=\boldsymbol{\varSigma}_{\mu j}(n\bar{\mathbf{w}}_{j}+\mathbf{H}_{\mu j0}^{-1}\boldsymbol{\mu }_{j0})\) with \(\bar{\mathbf{w}}_{j}=n^{-1} \sum_{i=1}^{n} (\mathbf{w}_{ij}-\mathbf{1}_{L-1}\boldsymbol {\varLambda}_{j}'\boldsymbol{\omega}_{i})\).

(7) The full conditional distributions of Λ and Ψ are given as follows:

(A.10)
(A.11)
(A.12)
(A.13)

where \(\mathbf{H}_{j}^{*}=(\mathbf{H}_{j0}^{-1}+\boldsymbol{\varOmega }\boldsymbol{\varOmega}')^{-1}\), \(\boldsymbol{\varLambda}_{j}^{*}=\mathbf{H}_{j}^{*} [\mathbf{H}_{j0}^{-1}\boldsymbol{\varLambda}_{j0}+\boldsymbol {\varOmega}\widetilde{\mathbf{Z}}^{*}_{j}]\), \(\boldsymbol{\varLambda}_{j}^{**}=\mathbf{H}_{j}^{*} [\mathbf{H}_{j0}^{-1}\boldsymbol{\varLambda}_{j0}+\boldsymbol {\varOmega}\widetilde{\mathbf{Y}}_{j}]\), \(\beta_{j}^{*}=\beta_{j0}+2^{-1}[\widetilde{\mathbf{Z}}_{j}^{*'} \widetilde{\mathbf{Z}}^{*}_{j}-{\boldsymbol{\varLambda}^{*}_{j}}'\mathbf {H}_{j}^{*-1}{\boldsymbol{\varLambda}^{*}_{j}} +\boldsymbol{\varLambda}_{j0}'\mathbf{H}_{j0}^{-1}\boldsymbol {\varLambda}_{j0}]\), \(\beta_{j}^{**}=\beta_{j0}+2^{-1}[\widetilde{\mathbf{Y}}_{j}' \widetilde{\mathbf{Y}}_{j}-{\boldsymbol{\varLambda}^{**}_{j}}'\mathbf {H}_{j}^{*-1} {\boldsymbol{\varLambda}^{**}_{j}}+\boldsymbol{\varLambda }_{j0}'\mathbf{H}_{j0}^{-1}\boldsymbol{\varLambda}_{j0}]\), with \(\widetilde{\mathbf{Z}}_{j}^{*}=(z_{1j}^{*}-\mu_{j},\ldots ,z_{nj}^{*}-\mu_{j})'\) and \(\widetilde{\mathbf{Y}}_{j}=(y_{1j}-\mu_{j},\ldots,y_{nj}-\mu_{j})'\). Finally, \(\mathbf{H}_{j}^{**}=(\mathbf{H}_{j0}^{-1}+(L-1)\boldsymbol {\varOmega}\boldsymbol{\varOmega}')^{-1}\) and \(\boldsymbol{\varLambda}_{j}^{***}=\mathbf{H}_{j}^{**} [\mathbf{H}_{j0}^{-1}\boldsymbol{\varLambda}_{j0}+\boldsymbol {\varOmega}\widetilde{\mathbf{W}}_{j}]\) with \(\widetilde{\mathbf{W}}_{j}=(\mathbf{1}_{L-1}' (\mathbf {w}_{1j}-\nobreak\boldsymbol{\mu}_{j} ),\ldots, \mathbf{1}_{L-1}' (\mathbf{w}_{nj}-\boldsymbol{\mu}_{j}) )'\).

(8) The full conditional distributions of ψ δ and Φ are as follows:

$$ p\bigl(\psi_{\delta}^{-1}\bigl|\cdot\bigr) \stackrel {D}{=}\mathrm{Gamma}\bigl[n/2+ \alpha_{\delta0},\beta_{\delta}^*\bigr], \qquad p\bigl( \boldsymbol{\varPhi}^{-1}\bigl|\cdot\bigr) \stackrel{D}{=}\mathrm {Wishart}\bigl[\mathbf{R}^*, n/2+ \rho_0\bigr], $$
(A.14)

where \(\beta_{\delta}^{*}=\beta_{\delta0}+2^{-1} [\eta_{i}-\sum_{l=1}^{m} \sum_{k=1}^{K_{bl}} b_{lk} B_{lk}^{c}(c_{il})-\sum_{l=1}^{q_{2}} \sum_{k=1}^{K_{l}} \gamma_{lk} B_{lk}(\varPhi^{*}(\xi_{i})) ]^{2}\), and \(\mathbf{R}^{*}=\mathbf{R}_{0}+\sum_{i=1}^{n} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}'\).

(9) The full conditional distributions of α and Z are given as follows. For j=1,…,r 1, let \(\mathbf{Z}_{j}^{*}=(z_{1j}^{*},\ldots,z_{nj}^{*})'\), Z j =(z 1j ,…,z nj )′ we have \(p(\boldsymbol{\alpha},\mathbf{Z}^{*}|\mathbf{D},\mathbf {W},\boldsymbol{\varOmega},\boldsymbol{\theta}_{*})=\prod_{j=1}^{r_{1}} p(\boldsymbol{\alpha}_{j},\mathbf{Z}_{j}^{*}|\mathbf{Z}_{j},\allowbreak \boldsymbol {\varOmega}, \boldsymbol{\theta}_{*})\), and \(p(\boldsymbol{\alpha}_{j},\mathbf{Z}^{*}_{j}|\mathbf {Z}_{j},\boldsymbol{\varOmega},\boldsymbol{\theta}_{*})= p(\boldsymbol{\alpha}_{j}|\mathbf{Z}_{j},\boldsymbol{\varOmega },\boldsymbol{\theta}_{*}) p(\mathbf{Z}^{*}_{j}|\boldsymbol{\alpha}_{j}, \mathbf {Z}_{j},\boldsymbol{\varOmega},\boldsymbol{\theta}_{*})\), with

(A.15)

Finally, \(p(\mathbf{Z}^{*}_{j}|\boldsymbol{\alpha}_{j},\mathbf {Z}_{j},\boldsymbol{\varOmega},\boldsymbol{\theta}_{*})= \prod_{i=1}^{n} p(z^{*}_{ij}|\boldsymbol{\alpha}_{j},z_{ij}, \boldsymbol {\omega}_{i}, \boldsymbol{\theta}_{*})\), and

$$ p\bigl(z^*_{ij}\bigl|\boldsymbol{\alpha}_{j},z_{ij}, \boldsymbol{\omega}_i, \boldsymbol{\theta}_*\bigr) \stackrel {D}{=}N\bigl[\mu_{j}+ \boldsymbol{\varLambda}_{j}'\boldsymbol{\omega}_i, \psi_{j} \bigr] \mathrm{I}_{[\alpha_{j,z_{ij}},\alpha_{j,z_{ij}+1})}\bigl (z^*_{ij}\bigr). $$
(A.16)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, XY., Lu, ZH., Cai, JH. et al. A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models. Psychometrika 78, 624–647 (2013). https://doi.org/10.1007/s11336-013-9323-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9323-7

Key words

Navigation