We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Radial Inertia Effects in Kolsky Bar Testing of Extra-soft Specimens

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Impact responses of extra-soft materials, such as ballistic gelatins and biological tissues, are increasingly in demand. The Kolsky bar is a widely used device to characterize high-rate behavior of materials. When a Kolsky bar is used to determine the dynamic compressive response of an extra-soft specimen, a spike-like feature often appears in the initial portion of the measured stress history. It is important to distinguish whether this spike is an experimental artifact or an intrinsic material response. In this research, we examined this phenomenon using experimental, numerical and analytical methods. The results indicate that the spike is the extra stress from specimen radial inertia during the acceleration stage of the axial deformation. Based on this understanding, remedies in both specimen geometry and loading pulse to minimize the artifact are proposed and verified, and thus capture the intrinsic dynamic behavior of the specimen material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kolsky H (1949) An investigation of the mechanical properties of meterials at very high rates of loading. Proc R Soc London, B 62:679–700.

    Google Scholar 

  2. Gray GT (2000) Classic split-Hopkinson pressure bar testing. In: ASM Handbook, Mechanical testing and evaluation vol 8, Materials Park, OH, pp 462–476.

  3. Song B, Chen W (2004) Dynamic stress equilibration in split Hopkinson pressure tests on soft materials. Exp Mech 44:300–312.

    Article  Google Scholar 

  4. Gray GT, Blumenthal WR (2000) Split-Hopkinson pressure bar testing of soft materials. In: ASM Handbook, Mechanical testing and evaluation vol 8, Materials Park, OH, pp 488–496.

  5. Dioh NN, Ivankovic A, Leevers PS, Williams JG (1995) Stress wave propagation effects in split Hopkionson pressure bar tests. Proc R Soc London, A 499:187–204.

    Google Scholar 

  6. Gray GT, Blumenthal WR, Trujillo CP, Carpenter RW (1997) Influence of temperature and strain rate on the mechanical behavior of adiprene L-100. J Phys IV France Colloque C3 (DYMAT 97) 7:523–528.

    Google Scholar 

  7. Chen W, Lu F, Frew DJ, Forrestal MJ (2002) Dynamic compression testing of soft materials. J Appl Mech 69:214–223.

    Article  MATH  Google Scholar 

  8. Wu XJ, Gorham DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. J Phys IV France C3:91–96.

    Google Scholar 

  9. Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39:81–85.

    Article  Google Scholar 

  10. Chen W, Lu F, Zhou B (2000) A quartz-crystal-embedded split Hopkinson pressure bar for soft materials. Exp Mech 40:1–6.

    Article  MATH  Google Scholar 

  11. Song B, Chen W (2003) One-dimensional dynamic compressive behavior of EPDM rubber. J Eng Mater Technol 125:301–394.

    Article  MathSciNet  Google Scholar 

  12. Song B, Chen W (2004) Dynamic compressive behavior of EPDM rubber under nearly uniaxial strain conditions. J Eng Mater Technol 126:213–217.

    Article  Google Scholar 

  13. Song B, Chen W, Jiang X (2005a) Split Hopkinson pressure experiments on polymeric foams. Int J Veh Des 37:185–198.

    Article  Google Scholar 

  14. Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32:1384–1402.

    Article  Google Scholar 

  15. Song B, Chen W (2005) Split Hopkinson pressure bar techniques for characterizing soft materials. Lat Am J Solids Struct 2:113–152.

    Google Scholar 

  16. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, Berlin Heidelberg New York.

    Google Scholar 

  17. Product description of rubber and foam: ultra-elastic clear gel rubber, http://www.mcmaster.com.

  18. Lindholm US (1964) Some experiments with split Hopkinson pressure bar. J Mech Phys Solids 12:317–335.

    Article  Google Scholar 

  19. Follansbee PS, Frantz C (1983) Wave propagation in the split Hopkinson pressure bar. J Eng Mater Technol 105:61–66.

    Article  Google Scholar 

  20. Davies E, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–179.

    Article  Google Scholar 

  21. Gorham DA, Pope PH, Cox O (1984) Sources of error in very high strain rate compression tests. Inst Phys Conf Ser 70:151–158.

    Google Scholar 

  22. Malinowski JZ, Klepaczko JR (1986) A unified analytic and numerical approach to specimen behaviour in the split-Hopkinson pressure bar. Int J Mech 28:381–391.

    Article  Google Scholar 

  23. Gorham DA (1989) Specimen inertia in high strain-rate compression. J Phys, D, Appl Phys 22:1888–1893.

    Article  Google Scholar 

  24. Gorham DA (1991) The effect of specimen dimensions on high strain rate compression measurements of copper. J Phys, D, Appl Phys 24:1489–1492.

    Article  Google Scholar 

  25. Forrestal MJ, Wright TW, Chen W (2006) The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Impact Eng 34:405–411.

    Article  Google Scholar 

  26. Syn CJ (2004) Radial inertia effects through sample geometry change. M.S. thesis, University of Arizona.

  27. Avitzur B (1968) Metal forming: processes and analysis. McGraw-Hill, New York.

    Google Scholar 

  28. Johnson AR, Quigley CJ, Freese CE (1995) A viscohyperelastic finite-element model for rubber. Comput Methods Appl Mech Eng 127:163–180.

    Article  MATH  Google Scholar 

  29. Chung DT (1996) The effect of specimen shape on dynamic flow stress. In: Schmidt SC, Tao WC (eds) Shock compression of condensed matter 1995, vol 370. American Institute of Physics, Woodbury, New York, pp 483–486.

    Google Scholar 

  30. Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum. J Appl Mech 37:83–91.

    Google Scholar 

  31. Christensen RJ, Swanson SR, Brown WS (1972) Split-Hopkinson-bar tests on rocks under confining pressure. Exp Mech 11:508–513 (November).

    Article  Google Scholar 

  32. Parry DJ, Walker AG, Dixon PR (1995) Hopkinson bar pulse smoothing. Meas Sci Technol 6:443–446.

    Article  Google Scholar 

  33. Follansbee PS (1985) The Hopkinson bar. In: ASM Handbook, Mechanical testing and evaluation, vol 8. Materials Park, OH, pp 198–203.

  34. Song B, Chen W (2005) Split Hopkinson pressure bar technique for characterizing soft materials. Lat Am J Solids Struct 2:113–152.

    Google Scholar 

Download references

Acknowledgements

This research was supported by US Army Research Laboratory (ARL) through a collaborative research agreement with Purdue University. The authors wish to thank Dr. Michael Scheidler of ARL for his efforts in the proofreading of the analytical modeling work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Chen.

Appendix: Analysis of Radial Inertia in an Annular Specimen

Appendix: Analysis of Radial Inertia in an Annular Specimen

General Hooke’s law for linear elastic materials is

$$ E_{{\text{s}}} \varepsilon _{r} = \sigma _{r} - \nu {\left( {\sigma _{z} + \sigma _{\theta } } \right)} $$
(19)
$$ E_{{\text{s}}} \varepsilon _{\theta } = \sigma _{\theta } - \nu {\left( {\sigma _{z} + \sigma _{r} } \right)} $$
(20)
$$ E_{{\text{s}}} \varepsilon _{z} = \sigma _{z} - \nu {\left( {\sigma _{\theta } + \sigma _{r} } \right)} $$
(21)

where E s is the Young’s modulus and ν is the Poisson’s ratio. The Hooke’s law was used to convert the strains into stress components. The resultant stress components must satisfy the equation of motion equation (15)

$$ \frac{{\partial \sigma _{r} }} {{\partial r}} = - \rho _{{\text{s}}} {\left[ {\frac{r} {2}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \frac{{{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}}} {r}} \right]} - \frac{{\sigma _{r} - \sigma _{\theta } }} {r} = - \rho _{{\text{s}}} {\left[ {\frac{r} {2}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \frac{{{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}}} {r}} \right]} - \frac{{4E_{{\text{s}}} C_{1} {\left( t \right)}}} {{3r^{3} }} $$
(22)

Integration of equation (22) yields

$$ \sigma _{r} = - \rho _{{\text{s}}} {\left[ {\frac{{r^{2} }} {4}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \ln {\left( r \right)}{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}} \right]} + \frac{{2E_{{\text{s}}} C_{1} {\left( t \right)}}} {{3r^{2} }} + C_{2} {\left( t \right)} $$
(23)

Corresponding stress components in the other two directions from equations (19), (20), (21) are

$$ \sigma _{\theta } = \frac{4} {3}E_{{\text{s}}} \varepsilon _{\theta } + \frac{2} {3}E_{{\text{s}}} \varepsilon _{z} + \sigma _{r} $$
(24)
$${\,\matrix{ {{\sigma _{z} = {4 \over 3}E_{{\rm{s}}} \varepsilon _{z} + {2 \over 3}E_{{\rm{s}}} \varepsilon _{\theta } + \sigma _{r} } \hfill} \cr {{ = {4 \over 3}E_{{\rm{s}}} \varepsilon _{z} + {2 \over 3}E_{{\rm{s}}} {\left[ { - {{C_{1} {\left( t \right)}} \over {r^{2} }} - {1 \over 2}\varepsilon _{z} } \right]} - \rho _{{\rm{s}}} {\left[ {{{r^{2} } \over 4}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \ln {\left( r \right)}{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}} \right]} + {{2E_{{\rm{s}}} C_{1} {\left( t \right)}} \over {3r^{2} }} + C_{2} {\left( t \right)}} \hfill} \cr {{ = E_{{\rm{s}}} \varepsilon _{z} - \rho _{{\rm{s}}} {\left[ {{{r^{2} } \over 4}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \ln {\left( r \right)}{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}} \right]} + C_{2} {\left( t \right)}} \hfill} \cr } }$$
(25)

Both the outer and inner hoop surfaces are stress-free, so the boundary conditions are σ r (r = b) = 0 and σ r (r = a) = 0. These boundary conditions and equation (23) lead to

$$ \sigma _{r} = - \rho _{{\text{s}}} {\left[ {\frac{{a^{2} }} {4}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \ln {\left( a \right)}{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}} \right]} + \frac{{2E_{{\text{s}}} C_{1} {\left( t \right)}}} {{3a^{2} }} + C_{2} {\left( t \right)} = 0 $$
(26)
$$ \sigma _{r} = - \rho _{{\text{s}}} {\left[ {\frac{{b^{2} }} {4}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \ln {\left( b \right)}{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}} \right]} + \frac{{2E_{{\text{s}}} C_{1} {\left( t \right)}}} {{3b^{2} }} + C_{2} {\left( t \right)} = 0 $$
(27)

Combination of these two equations results in

$$ \rho _{{\text{s}}} {\left[ {\frac{{b^{2} - a^{2} }} {4}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} + \ln {\left( {\frac{b} {a}} \right)}{\mathop C\limits^{ \cdot \cdot } }_{1} {\left( t \right)}} \right]} + \frac{{2{\left( {b^{2} - a^{2} } \right)}E_{{\text{s}}} C_{1} {\left( t \right)}}} {{3a^{2} b^{2} }} + C_{2} {\left( t \right)} = 0 $$
(28)

which has the solution when \( {\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} \) is a constant and t < t m

$$ C_{1} = A\cos \lambda t + B\sin \lambda t + m $$
(29)

where \( \lambda = {\sqrt {\frac{{2E_{s} {\left( {b^{2} - a^{2} } \right)}}} {{3\rho _{s} \ln {\left( {\frac{b} {a}} \right)}b^{2} a^{2} }}} } \).

Because the specimen is initially at rest, the initial displacement and velocity of a material particle must vanish: u| t−0 = 0 and \( \left. {{\mathop u\limits^ \cdot }} \right|_{{t = 0}} = 0 \), which lead to

$$ C_{1} {\left( 0 \right)} = 0,\,{\text{and}}\;{\mathop C\limits^ \cdot }_{1} {\left( {t = 0} \right)} = 0 $$
(30)

Thus \( m = - \frac{{3\rho _{{\text{s}}} a^{2} b^{2} }} {{8E_{{\text{s}}} }}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} = - A \), and B = 0. And we have

$$ C_{1} {\left( t \right)} = m{\left( {1 - \cos \lambda t} \right)} = - \frac{{3\rho _{{\text{s}}} a^{2} b^{2} }} {{8E_{{\text{s}}} }}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} {\left( {1 - \cos \lambda t} \right)} $$
(31)

Substitution of equation (31) into equation (28) results in

$$ C_{2} = {\left( {\rho _{s} \frac{{a^{2} }} {4}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} - \frac{{2E_{s} }} {{3a^{2} }}m} \right)} + {\left( {\rho _{s} \ln {\left( a \right)}\lambda ^{2} + \frac{{2E_{s} }} {{3a^{2} }}} \right)}m\cos \lambda t $$
(32)

Finally, the axial stress in the specimen is found to be

$${\sigma _{z} = E_{s} \varepsilon _{z} + {\left\{ {\rho _{s} {\left( {{{a^{2} + b^{2} - r^{2} } \over 4}} \right)} - {{3\rho _{s} a^{2} b^{2} } \over {8E_{s} }}{\left[ {\rho \ln {\left( {{a \over r}} \right)}\lambda ^{2} + {{2E_{s} } \over {3a^{2} }}} \right]}\cos \lambda t} \right\}}{\mathop \varepsilon \limits^{ \cdot \cdot } }_{z} }$$
(33)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, B., Ge, Y., Chen, W.W. et al. Radial Inertia Effects in Kolsky Bar Testing of Extra-soft Specimens. Exp Mech 47, 659–670 (2007). https://doi.org/10.1007/s11340-006-9017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-9017-5

Keywords

Navigation