Skip to main content

Advertisement

Log in

Modulus, Fracture Strength, and Brittle vs. Plastic Response of the Outer Shell of Arc-grown Multi-walled Carbon Nanotubes

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The fracture strengths and elastic moduli of arc-grown multi-walled carbon nanotubes (MWCNTs) were measured by tensile loading inside of a scanning electron microscope (SEM). Eighteen tensile tests were performed on 14 MWCNTs with three of them being tested multiple times (3×, 2×, and 2×, respectively). All the MWCNTs fractured in the “sword-in-sheath” mode. The diameters of the MWCNTs were measured in a transmission electron microscope (TEM), and the outer diameter with an assumed 0.34 nm shell thickness was used to convert measured load-displacement data to stress and strain values. An unusual yielding before fracture was observed in two tensile loading experiments. The 18 outer shell fracture strength values ranged from 10 to 66 GPa, and the 18 Young's modulus values, obtained from a linear fit of the stress–strain data, ranged from 620 to 1,200 GPa, with a mean of 940 GPa. The possible influence of stress concentration at the clamps is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58.

    Article  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605.

    Article  Google Scholar 

  3. Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607.

    Article  Google Scholar 

  4. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930.

    Article  Google Scholar 

  5. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514.

    Article  Google Scholar 

  6. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79(7):1297–1300.

    Article  Google Scholar 

  7. Bower C, Zhu W, Shalom D, Lopez D, Chen LH, Gammel PL, Jin S (2002) On-chip vacuum microtriode using carbon nanotube field emitters. Appl Phys Lett 80(20):3820–3822.

    Article  Google Scholar 

  8. Cao H, Wang Q, Wang DW, Dai HJ (2005) Suspended carbon nanotube quantum wires with two gates. Small 1(1):138–141.

    Article  Google Scholar 

  9. Javey A, Tu R, Farmer DB, Guo J, Gordon RG, Dai HJ (2005) High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett 5(2):345–348.

    Article  Google Scholar 

  10. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870.

    Article  Google Scholar 

  11. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912.

    Article  Google Scholar 

  12. Ding W, Eitan A, Fisher FT, Chen X, Dikin DA, Andrews R, Brinson LC, Schadler LS, Ruoff RS (2003) Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett 3(11):1593–1597.

    Article  Google Scholar 

  13. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high young's modulus observed for individual carbon nanotubes. Nature 381(6584):678–680.

    Article  Google Scholar 

  14. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young's modulus of single-walled nanotubes. Phys Rev B 58(20):14013–14019.

    Article  Google Scholar 

  15. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516.

    Article  Google Scholar 

  16. Wang ZL, Poncharal P, de Heer WA (2000) Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J Phys Chem Solids 61(7):1025–1030.

    Article  Google Scholar 

  17. Salvetat JP, Kulik AJ, Bonard JM, Briggs GAD, Stockli T, Metenier K, Bonnamy S, Beguin F, Burnham NA, Forro L (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11(2):161–165.

    Article  Google Scholar 

  18. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82(5):944–947.

    Article  Google Scholar 

  19. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640.

    Article  Google Scholar 

  20. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555.

    Article  Google Scholar 

  21. Yu MF, Dyer MJ, Skidmore GD, Rohrs HW, Lu XK, Ausman KD, Von Ehr JR, Ruoff RS (1999) Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10(3):244–252.

    Article  Google Scholar 

  22. Lukic B, Seo JW, Bacsa RR, Delpeux S, Beguin F, Bister G, Fonseca A, Nagy JB, Kis A, Jeney S, Kulik AJ, Forro L (2005) Catalytically grown carbon nanotubes of small diameter have a high young's modulus. Nano Lett 5(10): 2074–2077.

    Article  Google Scholar 

  23. http://www.mercorp.com/mercorp/nano.pdf.

  24. Morishita K, Takarada T (1998) Purification of carbon nanotube by wet oxidation. Kagaku Kogaku Ronbunshu 24(4):670–674.

    Google Scholar 

  25. Park YS, Choi YC, Kim KS, Chung DC, Bae DJ, An KH, Lim SC, Zhu XY, Lee YH (2001) High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 39(5):655–661.

    Article  Google Scholar 

  26. Sun XG, Zeng XS (2004) An investigation on the purification of multiwall carbon nanotubes by oxidation in air. New Carbon Materials 19(1):65–68.

    MathSciNet  Google Scholar 

  27. Wiltshire JG, Khlobystov AN, Li LJ, Lyapin SG, Briggs GAD, Nicholas RJ (2004) Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chem Phys Lett 386(4–6): 239–243.

    Article  Google Scholar 

  28. Bom D, Andrews R, Jacques D, Anthony J, Chen BL, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2(6):615–619.

    Article  Google Scholar 

  29. Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65(23):235430.

    Article  Google Scholar 

  30. Mielke SL, Troya D, Zhang S, Li JL, Xiao SP, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390(4–6):413–420.

    Article  Google Scholar 

  31. Zhang SL, Mielke SL, Khare R, Troya D, Ruoff RS, Schatz GC, Belytschko T (2005) Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys Rev B 71(11):115403.

    Article  Google Scholar 

  32. Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic-force microscope cantilevers. Review of Scientific Instruments 66(7):3789–3798.

    Article  Google Scholar 

  33. Chen XQ, Zhang SL, Wagner GJ, Ding WQ, Ruoff RS (2004) Mechanical resonance of quartz microfibers and boundary condition effects. J Appl Physi 95(9):4823–4828.

    Article  Google Scholar 

  34. Ding W, Calabri L, Chen X, Kohlhaas KM, Ruoff RS (2006) Mechanics of crystalline boron nanowires. Compos Sci Technol 66:1109–1121.

    Article  Google Scholar 

  35. Boettger JC (1997) All-electron full-potential calculation of the electronic band structure, elasstic constants, and equation of state for graphite. Phys Rev B 55(17):11202–11211.

    Article  Google Scholar 

  36. Ding W, Dikin DA, Chen X, Wang X, Li X, Piner R, Ruoff RS, Zussman E (2005) Mechanics of hydrogenated amorphous carbon deposits from electron beam induced deposition of a paraffin precursor. J Appl Physi 98:014905.

    Article  Google Scholar 

  37. Li CY, Ruoff RS, Chou TW (2005) Modeling of carbon nanotube clamping in tensile tests. Compos Sci Technol 65(15–16):2407–2415.

    Article  Google Scholar 

  38. Pugno NM, Ruoff RS (2004) Quantized fracture mechanics. Philos Mag 84(27):2829–2845.

    Article  Google Scholar 

  39. Nardelli MB, Yakobson BI, Bernholc J (1998) Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett 81(21):4656–4659.

    Article  Google Scholar 

  40. Yakobson BI (1998) Mechanical relaxation and “intramolecular plasticity” in Carbon Nanotubes. Appl Phys Lett 72(8):918–920.

    Article  Google Scholar 

  41. Yu MF, Yakobson BI, Ruoff RS (2000) Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J Phys Chem B 104:8764–8767.

    Article  Google Scholar 

  42. Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43:2175–2185.

    Article  Google Scholar 

  43. Lu S, Guo Z, Ding W, Ruoff RS (2006) Analysis of a microelectromechanical system testing stage for tensile loading of nanostructures. Review of Scientific Instruments 77(5):1–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Ruoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, W., Calabri, L., Kohlhaas, K.M. et al. Modulus, Fracture Strength, and Brittle vs. Plastic Response of the Outer Shell of Arc-grown Multi-walled Carbon Nanotubes. Exp Mech 47, 25–36 (2007). https://doi.org/10.1007/s11340-006-9344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-9344-6

Keywords

Navigation