Skip to main content
Log in

Sampling Moiré Method for Accurate Small Deformation Distribution Measurement

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a novel accurate deformation distribution measurement technique by using sampling moiré method is proposed. The basic principle and an experimental result of a steel beam in symmetric three-point bending are reported. In this method, the measurement area of a target is attached with an adhesive tape of a known pitch grating firstly. An ordinary CCD camera is installed on a fixed point to record the image during deformation. The captured image is analyzed by performing easy image processing, i.e., thinning-out and linear interpolation, to obtain the multiple phase-shifted moiré patterns. Then, the phase distribution of the moiré pattern can be calculated using phase-shifting method. Finally, the deformation distribution is calculated by the grating pitch times the phase difference of before deformation and after deformation. The experimental results in symmetric three-point bending test show that the displacement of the steel beam at loading point agree well with those obtained by an accurate displacement sensor. The average error of displacement measurement is less than 4 μm when 2 mm grating pitch is used, and it corresponds to 1/500 of the grating pitch accuracy. This indicates that noncontact deformation distribution measurement is possible by simple and easy procedure with high accuracy, high speed, and low cost for the structural evaluation of infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dally JW, Riley WF (1991) Experimental stress analysis, 3rd edn. McGraw-Hill, New York.

    Google Scholar 

  2. Kobayashi AS (1993) Handbook on experimental mechanics, 2nd edn. VCH, New York.

    Google Scholar 

  3. Nassif HH, Gindy M, Davis J (2005) Comparison of laser doppler vibrometer with contact sensors for monitoring bridge deflection and vibration. NDT E Int 38:213–218. doi:10.1016/j.ndteint.2004.06.012.

    Article  Google Scholar 

  4. Fujino Y, Abe M (2003) Structural health monitoring in civil infrastructures—research activities at the bridge and structure laboratory of the university of Tokyo. Structural Health Monitoring and Intelligent Infrastructure, pp 39–50

  5. Vohra ST, Todd MD, Johnson GA, Chang CC, Danver BA (1999) Fiber bragg grating sensor system for civil structure monitoring applications and field tests. Proceedings of the Society for Photo-Instrumentation Engineers 3746:32–37.

    Google Scholar 

  6. Sutton MA, Cheng M, Peters WH, Chao YJ, McNeil SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 43:143–150. doi:10.1016/0262-8856(86)90057-0.

    Article  Google Scholar 

  7. McNeil SR, Peters WH, Sutton MA (1987) Estimation of stress intensity factor by digital image correlation. Eng Fract Mech 281:101–112. doi:10.1016/0013-7944(87)90124-X.

    Article  Google Scholar 

  8. Yoneyama S, Morimoto Y (2003) Accurate displacement measurement by correlation of colored random patterns. JSME Int J 462:178–184. doi:10.1299/jsmea.46.178.

    Article  Google Scholar 

  9. Joenathan C, Franze B, Haible P, Tiziani HJ (1998) Speckle interferometry with temporal phase evaluation for measuring large-object deformation. Appl Opt 3713:2608–2614. doi:10.1364/AO.37.002608.

    Article  Google Scholar 

  10. Martínez A, Rayas JA, Rodríguez-Vera R, Puga HJ (2004) Three-dimensional deformation measurement from the combination of in-plane and out-of-plane electronic speckle pattern interferometers. Appl Opt 4324:4652–4658. doi:10.1364/AO.43.004652.

    Article  Google Scholar 

  11. Yamaguchi I, Zhang T (1997) Phase-shifting digital holography. Opt Lett 2216:1268–1270. doi:10.1364/OL.22.001268.

    Article  Google Scholar 

  12. Yamaguchi I, Kato J, Matsuzaki H (2003) Measurement of surface shape and deformation by phase-shifting image digital holography. Opt Eng 425:1267–1271. doi:10.1117/1.1566778.

    Article  Google Scholar 

  13. Yoneyama S, Kitagawa A, Iwata S, Tani K, Kikuta H (2007) Bridge deflection measurement using digital image correlation. Exp Tech 311:34–40. doi:10.1111/j.1747-1567.2006.00132.x.

    Article  Google Scholar 

  14. Baumbach T, Kolenovic E, Kebbel V, Juptner W (2006) Improvement of accuracy in digital holography by use of multiple holograms. Appl Opt 4524:6077–6085.

    Article  Google Scholar 

  15. Morimoto Y, Matui T, Fujigaki M, Kawagishi N (2007) Subnanometer displacement measurement by averaging of phase-difference in windowed digital holographic interferometry. Opt Eng 462:025603. (8 pages).

    Article  Google Scholar 

  16. Morimoto Y, Matui T, Fujigaki M, Matsui A (2008) Three-dimensional displacement analysis by windowed phase-shifting digital holographic interferometry. Strain 441:49–56.

    Google Scholar 

  17. Walker CA (2004) Handbook of moiré measurement. Institute of Physics, Philadelphia.

    Book  MATH  Google Scholar 

  18. Amidror I (2000) The theory of the moiré phenomenon. Kluwer, Amsterdam.

    MATH  Google Scholar 

  19. Asundi A, Yung KH (1991) Logical moiré and its application. Exp Mech 313:236–242. doi:10.1007/BF02326066.

    Article  Google Scholar 

  20. Morimoto Y, Hayashi T (1984) Deformation measurement during powder compaction by a scanning-moiré method. Exp Mech 242:112–116. doi:10.1007/BF02324992.

    Article  Google Scholar 

  21. Morimoto Y, Yang IH, Gu CG (1996) Scanning moiré method for obtaining smooth fringe patterns. Opt Lasers Eng 241:3–17. doi:10.1016/0143-8166(95)00068-Y.

    Article  Google Scholar 

  22. Choi YB, Kim SW (1998) Phase-shifting grating projection moiré topography. Opt Eng 373:1005–1010. doi:10.1117/1.601934.

    Article  Google Scholar 

  23. Jin L, Kodera Y, Yoshizawa T, Otani Y (2000) Shadow moiré profilometry using the phase-shifting method. Opt Eng 398:2119–2123. doi:10.1117/1.1305468.

    Article  Google Scholar 

  24. Xie H, Kishimoto S, Asundi A, Boay C, Shinya N, Yu J, Ngoi B (2000) In-plane deformation measurement using the atomic force microscope moiré method. Nanotechnology 11:24–29. doi:10.1088/0957-4484/11/1/305.

    Article  Google Scholar 

  25. Lu Y, Zhong H, Ngoi B, Chai G, Asundi A (2001) Thermal deformation measurement of electronic packages using the atomic force microscope scanning moiré technique. Rev Sci Instrum 72:2180–2185. doi:10.1063/1.1350641.

    Article  Google Scholar 

  26. Xie H, Shang H, Dai F, Li B, Xing Y (2004) Phase shifting SEM moiré method. Opt Laser Technol 36:291–297. doi:10.1016/j.optlastec.2003.09.012.

    Article  Google Scholar 

  27. Kinnstaetter K, Lohmann W, Schwider J, Streibl N (1988) Accuracy of phase shifting interferometry. Appl Opt 2724:5082–5089.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported in part by Research Fellowships from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ri, S., Fujigaki, M. & Morimoto, Y. Sampling Moiré Method for Accurate Small Deformation Distribution Measurement. Exp Mech 50, 501–508 (2010). https://doi.org/10.1007/s11340-009-9239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9239-4

Keywords

Navigation