Skip to main content
Log in

Direct Extraction of Cohesive Fracture Properties from Digital Image Correlation: A Hybrid Inverse Technique

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The accuracy of an adopted cohesive zone model (CZM) can affect the simulated fracture response significantly. The CZM has been usually obtained using global experimental response, e.g., load versus either crack opening displacement or load-line displacement. Apparently, deduction of a local material property from a global response does not provide full confidence of the adopted model. The difficulties are: (1) fundamentally, stress cannot be measured directly and the cohesive stress distribution is non-uniform; (2) accurate measurement of the full crack profile (crack opening displacement at every point) is experimentally difficult to obtain. An attractive feature of digital image correlation (DIC) is that it allows relatively accurate measurement of the whole displacement field on a flat surface. It has been utilized to measure the mode I traction-separation relation. A hybrid inverse method based on combined use of DIC and finite element method is used in this study to compute the cohesive properties of a ductile adhesive, Devcon Plastic Welder II, and a quasi-brittle plastic, G-10/FR4 Garolite. Fracture tests were conducted on single edge-notched beam specimens (SENB) under four-point bending. A full-field DIC algorithm was employed to compute the smooth and continuous displacement field, which is then used as input to a finite element model for inverse analysis through an optimization procedure. The unknown CZM is constructed using a flexible B-spline without any “a priori” assumption on the shape. The inversely computed CZMs for both materials yield consistent results. Finally, the computed CZMs are verified through fracture simulation, which shows good experimental agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23:622–636

    Article  MATH  MathSciNet  Google Scholar 

  2. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  3. Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781

    Article  Google Scholar 

  4. Roesler J, Paulino GH, Park K, Gaedicke C (2007) Concrete fracture prediction using bilinear softening. Cem Concr Compos 29:300–12

    Article  Google Scholar 

  5. Shim D-J, Paulino GH, Dodds RH Jr (2006) J resistance behavior in functionally graded materials using cohesive zone and modified boundary layer models. Int J Fract 139:91–117

    Article  MATH  Google Scholar 

  6. Song SH, Paulino GH, Buttlar WG (2006) Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model. ASCE J Eng Mech 132:1215–1223

    Article  Google Scholar 

  7. Lin G, Meng XG, Cornec A, Schwalbe KH (1999) Effect of strength mis-match on mechanical performance of weld joints. Int J Fract 96:37–54

    Article  Google Scholar 

  8. Gdoutos EE (2005) Fracture mechanics: an introduction. Springer, Dordrecht

    MATH  Google Scholar 

  9. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397

    Article  MATH  Google Scholar 

  10. Zhang Z, Paulino GH (2005) Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int J Plast 21:1195–254

    Article  MATH  Google Scholar 

  11. Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33:2899–938

    Article  MATH  Google Scholar 

  12. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  MATH  Google Scholar 

  13. Zhang Z, Paulino GH (2007) Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. Int J Solids Struct 44:3601–3626

    Article  MATH  Google Scholar 

  14. Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–33

    Article  Google Scholar 

  15. Wells GN, Sluys LJ (2001) A new method for modeling cohesive cracks using finite elements. Int J Numer Methods Eng 50:2667–2682

    Article  MATH  Google Scholar 

  16. Shah SP, Ouyang C, Swartz SE (1995) Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials. Wiley, New York

    Google Scholar 

  17. Volokh KY (2004) Comparison between cohesive zone models. Commun Numer Methods Eng 20:845–856

    Article  MATH  Google Scholar 

  18. Song SH, Paulino GH, Buttlar WG (2008) Influence of the cohesive zone model shape parameter on asphalt concrete fracture behavior. In: Paulino GH, Pindera M-J, Dodds RH Jr et al (eds) Multiscale and functionally graded materials. AIP, Oahu Island, pp 730–735

    Google Scholar 

  19. van Mier JGM, van Vliet MRA (2002) Uniaxial tension test for the determination of fracture parameters of concrete: state of the art. Fracture of Concrete and Rock 69:235–247

    Google Scholar 

  20. Yang J, Fischer G (2006) Simulation of the tensile stress-strain behavior of strain hardening cementitious composites. In: Konsta-Gdoutos MS (ed) Measuring, monitoring and modeling concrete properties. Springer, Dordrecht, pp 25–31

    Chapter  Google Scholar 

  21. Seung Hee K, Zhifang Z, Shah SP (2008) Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve. Cem Concr Res 38:1061–9

    Article  Google Scholar 

  22. van Mier JGM (1997) Fracture processes of concrete: assessment of material parameters for fracture models. CRC, Boca Raton

    Google Scholar 

  23. Elices M (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69:137–163

    Article  Google Scholar 

  24. Seong Hyeok S, Paulino GH, Buttlar WG (2006) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73:2829–48

    Article  Google Scholar 

  25. Song SH, Paulino GH, Buttlar WG (2005) Cohesive zone simulation of mode I and mixed-mode crack propagation in asphalt concrete. Geo-Frontiers 2005 ASCE, Reston, VA, Austin, TX, U.S.A, pp 189–198

  26. Alfano M, Furgiuele F, Leonardi A, Maletta C, Paulino GH (2007) Cohesive zone modeling of mode I fracture in adhesive bonded joints. Key Eng Mater 348–349:13–16

    Article  Google Scholar 

  27. Tan H, Liu C, Huang Y, Geubelle PH (2005) The cohesive law for the particle/matrix interfaces in high explosives. J Mech Phys Solids 53:1892–917

    Article  Google Scholar 

  28. Abanto-Bueno J, Lambros J (2005) Experimental determination of cohesive failure properties of a photodegradable copolymer. Exp Mech 45:144–52

    Article  Google Scholar 

  29. Zabaras N, Morellas V, Schnur D (1989) Spatially regularized solution of inverse elasticity problems using the BEM. Commun Appl Numer Methods 5:547–553

    Article  MATH  Google Scholar 

  30. Schnur DS, Zabaras N (1990) Finite element solution of two-dimensional inverse elastic problems using spatial smoothing. Int J Numer Methods Eng 30:57–75

    Article  MATH  Google Scholar 

  31. Shen B, Stanciulescu I, Paulino GH (2008) Inverse computation of cohesive fracture properties from displacement fields. Submitted for journal publication

  32. Dally JW, Riley WF (2005) Experimental stress analysis. College House Enterprises, Knoxville

    Google Scholar 

  33. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21:427–31

    Google Scholar 

  34. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1:133–139

    Article  Google Scholar 

  35. Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–44

    Article  Google Scholar 

  36. Bruck HA, McNeill SR, Sutton MA, Peters WH III (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29:261–267

    Article  Google Scholar 

  37. Bonnet M, Constantinescu A (2005) Inverse problems in elasticity. Inverse Probl 21:1–50

    Article  MathSciNet  Google Scholar 

  38. Avril S, Bonnet M, Bretelle A-S, Grediac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  39. Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69:1695–1711

    Article  Google Scholar 

  40. Choi S, Shah SP (1997) Measurement of deformations on concrete subjected to compression using image correlation. Exp Mech 37:307–313

    Article  Google Scholar 

  41. Sokhwan C, Shah SP (1998) Fracture mechanism in cement-based materials subjected to compression. ASCE J Eng Mech 124:94–102

    Article  Google Scholar 

  42. Corr D, Accardi M, Graham-Brady L, Shah SP (2007) Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete. Eng Fract Mech 74:109–21

    Article  Google Scholar 

  43. Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000

    Article  Google Scholar 

  44. Lu H, Cary PD (2000) Deformation measurements by digital image correlation: implementation of a second-order displacement gradient. Exp Mech 40:393–400

    Article  Google Scholar 

  45. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41:167–75

    Article  Google Scholar 

  46. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001 (17 pp.)

    Article  Google Scholar 

  47. Pan B, Xie H, Guo Z, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46:033601

    Article  Google Scholar 

  48. Lecompte D, Sol H, Vantomme J, Habraken A (2006) Analysis of speckle patterns for deformation measurements by digital image correlation In: Proceedings of SPIE Vol 6341 International Society for Optical Engineering, Bellingham, WA, United States, Nimes, France, pp 63410E1-6

  49. Pan B, Xie H, Wang Z, Qian K, Wang Z (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16:7037–7048

    Article  Google Scholar 

  50. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken AM (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44:1132–1145

    Article  Google Scholar 

  51. Sorzano COS, Thevenaz P, Unser M (2005) Elastic registration of biological images using vector-spline regularization. IEEE Trans Biomed Eng 52:652–663

    Article  Google Scholar 

  52. Cheng P, Sutton MA, Schreier HW, McNeill SR (2002) Full-field speckle pattern image correlation with B-spline deformation function. Exp Mech 42:344–352

    Article  Google Scholar 

  53. Shen B (2009) Functionally graded fiber-reinforced cementitious composites—manufacturing and extraction of cohesive fracture properties using finite element and digital image correlation, Ph.D. thesis. University of Illinois at Urbana-Champaign, United States

  54. Genovese K, Lamberti L, Pappalettere C (2005) Improved global-local simulated annealing formulation for solving non-smooth engineering optimization problems. Int J Solids Struct 42:203–37

    Article  MATH  MathSciNet  Google Scholar 

  55. Molimard J, Le Riche R, Vautrin A, Lee JR (2005) Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test. Exp Mech 45:404–11

    Article  Google Scholar 

  56. Grediac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42:233–253

    Article  Google Scholar 

  57. Geymonat G, Pagano S (2003) Identification of mechanical properties by displacement field measurement: a variational approach. Meccanica 38:535–545

    Article  MATH  MathSciNet  Google Scholar 

  58. Roux S, Hild F (2008) Digital image mechanical identification (DIMI). Exp Mech 48:495–508

    Article  Google Scholar 

  59. Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44:4978–5002

    Article  MATH  Google Scholar 

  60. Bezerra LM, Saigal S (1993) A boundary element formulation for the inverse elastostatics problem (IESP) of flaw detection. Int J Numer Methods Eng 36:2189–202

    Article  MATH  Google Scholar 

  61. Schnur DS, Zabaras N (1992) An inverse method for determining elastic material properties and a material interface. Int J Numer Methods Eng 33:2039–57

    Article  MATH  Google Scholar 

  62. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  63. Nelder JA, Mead R (1965) Simplex method for function minimization. Comput J 7:308–313

    MATH  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support from the Natural Science Foundation under the Partnership for Advancing Technology in Housing Program (NSF- PATH Award #0333576). The technical support by Dr. Grzegorz Banas for the fracture testing in Newmark Civil Engineering Laboratory is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Paulino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, B., Paulino, G.H. Direct Extraction of Cohesive Fracture Properties from Digital Image Correlation: A Hybrid Inverse Technique. Exp Mech 51, 143–163 (2011). https://doi.org/10.1007/s11340-010-9342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9342-6

Keywords

Navigation