Skip to main content
Log in

3D Digital Volume Correlation of Synchrotron Radiation Laminography Images of Ductile Crack Initiation: An Initial Feasibility Study

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A feasibility study of measuring 3D displacement fields in the bulk during ductile crack initiation via combined Synchrotron Radiation Computed Laminography (SRCL) and Digital Volume Correlation (DVC) is performed. In contrast to tomography, SRCL is a technique that is particularly adapted to obtain three-dimensional (3D) reconstructed volumes of objects that are laterally extended (i.e., in 2 directions) and thin in the third direction, i.e. sheet-like objects. In-situ laminography data of an initiating crack ahead of a machined notch are used with a voxel size of 0.7 μm. The natural contrast of the observed 2XXX Al-alloy caused by intermetallic particles and initial porosity is used to measure displacement fields via a global DVC technique assuming a continuous displacement field. An initial performance study is carried out on data of the same undeformed material but after a substantial shift of the laminography rotation axis with respect to the imaged specimen. Volume correlations between different loading steps provide displacement fields that are qualitatively consistent with the remote loading conditions. Computed strain fields display a strain concentration close to the notch tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The resolution of a measuring system is the ‘smallest change in a quantity being measured that causes a perceptible change in the corresponding indication’ [42]. With this definition, high resolution levels do not allow small fluctuations to be measured.

References

  1. Zerbst U, Heinimann M, Dalle Donne C, Steglich D (2009) Fracture and damage mechanics modelling of thin-walled structures. An overview. Eng Fract Mech 76:5–43

    Article  Google Scholar 

  2. Chen J, Madi Y, Morgeneyer TF, Besson J (2011) Plastic flow and ductile rupture of a 2198 Al-Cu-Li aluminium alloy. Comp Mat Sci 50:1365–1371

    Article  Google Scholar 

  3. Le Jolu T, Morgeneyer TF, Gourgues-Lorenzon A-F (2010) Effect of joint line remnant on fatigue lifetime of friction stir welded Al-Cu-Li alloy. Sci Tech Weld Join 15:694–698

    Article  Google Scholar 

  4. Mahgoub E, Deng X, Sutton MA (2003) Three dimensional stress and deformation fields around flat and slant cracks under remote mode I loading conditions. Eng Fract Mech 70:2527–2542

    Article  Google Scholar 

  5. Lorthios J, Nguyen F, Gourgues-Lorenzon A-F, Morgeneyer TF, Cugy P (2010) Damage observation in a high manganese austenitic Twinning Induced Plasticity (TWIP) steel by synchrotron radiation computed tomography. Scr Mat 63:1220–1223

    Article  Google Scholar 

  6. Morgeneyer TF, Besson J (2011) Flat to slant ductile fracture transition: tomography examination and simulations using shear controlled void nucleation. Scr Mat 65:1002–1005

    Article  Google Scholar 

  7. Maire E, Zhou S, Adrien J, Dimichiel M (2011) Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography. Eng Fract Mech 78:2679–2690

    Article  Google Scholar 

  8. Landron C, Bouaziz O, Maire E, Adrien J (2010) Characterization and modeling of void nucleation by interface decohesion in dual phase steels. Scr Mat 63:973–976

    Article  Google Scholar 

  9. Maire E, Morgeneyer TF, Landron C, Adrien J, Helfen L (2012) Bulk evaluation of ductile damage development using high resolution tomography and laminography. C R Phys 13:328–336

    Article  Google Scholar 

  10. Helfen L, Myagotin A, Mikulík P, Pernot P, Voropaev A, Elyyan M, Di Michiel M, Baruchel J, Baumbach T (2011) On the implementation of computed laminography using synchrotron radiation. Rev Sci Instrum 82

  11. Helfen L, Morgeneyer TF, Xu F, Mavrogordato MN, Sinclair I, Schillinger B, Baumbach T (2012) Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens. Int J Mater Res 2012:170–173

    Article  Google Scholar 

  12. Maurel V, Helfen L, N’Guyen F, Köster A, Di Michiel M, Baumbach T, Morgeneyer TF (2012) Three-dimensional investigation of thermal barrier coatings by synchrotron-radiation computed laminography. Scr Mat 66:471–474

    Article  Google Scholar 

  13. Moffat AJ, Wright P, Helfen L, Baumbach T, Johnson G, Spearing SM, Sinclair I (2010) In situ synchrotron computed laminography of damage in carbon fibre-epoxy [90/0]s laminates. Scr Mat 62:97–100

    Article  Google Scholar 

  14. Morgeneyer TF, Helfen L, Sinclair I, Proudhon H, Xu F, Baumbach T (2011) Ductile crack initiation and propagation assessed via in situ synchrotron radiation computed laminography. Scr Mat 65:1010–1013

    Article  Google Scholar 

  15. Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts. Theory and Applications, Springer

    Google Scholar 

  16. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226

    Article  Google Scholar 

  17. Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42:272–278

    Article  Google Scholar 

  18. Bornert M, Chaix J-M, Doumalin P, Dupré J-C, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l′analyse des matériaux et des structures. Inst Mes Métrol 4:43–88

    Google Scholar 

  19. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37:1313–1320

    Article  Google Scholar 

  20. Liu L, Morgan E (2007) Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J Biomech 40:3516–3520

    Article  Google Scholar 

  21. Forsberg F, Mooser R, Arnold M, Hack E, Wyss P (2008) 3D Micro-scale deformations of wood in bending: synchrotron radiation μCT data analyzed with digital volume correlation. J Struct Biol 164:255–262

    Article  Google Scholar 

  22. Nielsen SF, Poulsen HF, Beckmann F, Thorning C, Wert JA (2003) Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater 51:2407–2415

    Article  Google Scholar 

  23. Limodin N, Réthoré J, Buffière J-Y, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Mater 57:4090–4101

    Article  Google Scholar 

  24. Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-Ray computed tomography of solid foam. Comp Part A 39:1253–1265

    Article  Google Scholar 

  25. Réthoré J, Tinnes J-P, Roux S, Buffière J-Y, Hild F (2008) Extended three-dimensional digital image correlation (X3D-DIC). C R Mecanique 336:643–649

    Article  MATH  Google Scholar 

  26. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto M-C, Buffière J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Meth Appl Mech Eng 199:1307–1325

    Article  MATH  Google Scholar 

  27. Limodin N, Réthoré J, Buffière J-Y, Hild F, Roux S, Ludwig W, Rannou J, Gravouil A (2010) Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Mater 58:2957–2967

    Article  Google Scholar 

  28. Morgeneyer TF, Besson J, Proudhon H, Starink MJ, Sinclair I (2009) Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet. Acta Mater 57:3902–3915

    Article  Google Scholar 

  29. Helfen L, Baumbach T, Mikulík P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86

  30. Helfen L, Myagotin A, Rack A, Pernot P, Mikulík P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Stat Sol (a) 204:2760–2765

    Article  Google Scholar 

  31. Xu F, Helfen L, Baumbach T, Suhonen H (2012) Comparison of image quality in computed laminography and tomography. Opt Express 20:794–806

    Article  Google Scholar 

  32. Helfen L, Baumbach T, Cloetens P, Baruchel J (2009) Phase contrast and holographic computed laminography. Appl Phys Lett 94

  33. Xu F, Helfen L, Moffat AJ, Johnson G, Sinclair I, Baumbach T (2010) Synchrotron radiation computed laminography for polymer composite failure studies. J Synchron Radiat 17:222–226

    Article  Google Scholar 

  34. Harasse S, Hirayama N, Yashiro W, Momose A (2010) X-ray phase laminography with Talbot interferometer. Proc SPIE 7804

  35. Altapova V, Helfen L, Myagotin A, Hänschke D, Moosmann J, Gunneweg J, Baumbach T (2012) Phase contrast laminography based on Talbot interferometry. Opt Express 20:6496–6508

    Article  Google Scholar 

  36. Krug K, Porra L, Coan P, Wallert A, Dik J, Coerdt A, Bravin A, Elyyan M, Reischig P, Helfen L, Baumbach T (2008) Relics in medieval altarpieces? Combining X ray tomographic, laminographic and phase contrast imaging to visualize thin organic objects. J Synchron Radiat 15:55–61

    Article  Google Scholar 

  37. Weitkamp T, Tafforeau P, Boller E, Cloetens P, Valade J-P, Bernard P, Peyrin F, Ludwig W, Helfen L, Baruchel J (2010) Status and evolution of the ESRF beamline ID19. In. ICXOM 2009, AIP Conf. Proc

  38. Rack A, Weitkamp T, Riotte M, Grigoriev D, Rack T, Helfen L, Baumbach T, Dietsch R, Holz T, Krämer M, Siewert F, Meduna M, Cloetens P, Ziegler E (2010) Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging. J Synchron Radiat 17:496–510

    Article  Google Scholar 

  39. Sijbers J, Postnovz A (2004) Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys Med Biol 49:247–253

    Article  Google Scholar 

  40. Cloetens P, Pateyron-Salomé M, Buffière J-Y, Peix G, Baruchel J, Peyrin F, Schlenker M (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81

  41. Zienkievicz OC, Taylor RL (1989) The Finite Element Method. McGraw-Hill

  42. 99-12:2007 IIg. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms, VIM. International Organization for Standardization; 2007

  43. Hild F, Maire E, Roux S, Witz J-F (2009) Three dimensional analysis of a compression test on stone wool. Acta Mater 57:3310–3320

    Article  Google Scholar 

  44. Limodin N, Réthoré J, Adrien J, Buffière J-Y, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51:959–970

    Article  Google Scholar 

  45. Leclerc H, Périé J-N, Hild F, Roux S (2012) Digital volume correlation: what are the limits to the spatial resolution? Méc & Indust., submitted

    Google Scholar 

  46. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech doi:10.1007/s11340-012-9603-7

Download references

Acknowledgements

The authors would like to acknowledge Ian Sinclair and Mark Mavrogordato from the University of Southampton for participating in/helping with the laminography experiment. Feng Xu is thanked for help with reconstruction of the data. Thibault Taillandier-Thomas is also thanked for running some resolution assessments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Morgeneyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgeneyer, T.F., Helfen, L., Mubarak, H. et al. 3D Digital Volume Correlation of Synchrotron Radiation Laminography Images of Ductile Crack Initiation: An Initial Feasibility Study. Exp Mech 53, 543–556 (2013). https://doi.org/10.1007/s11340-012-9660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9660-y

Keywords

Navigation