Skip to main content
Log in

Identification of the Out-of-Plane Shear Modulus of a 3D Woven Composite

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This study deals with the identification of macroscopic elastic parameters of a layer-to-layer interlock woven composite from a full-field measurement. As this woven composite has a coarse microstructure, the characteristic length of the weaving is not small as compared to the specimen size. A procedure based on an inverse identification method and full-field digital image correlation kinematic measurement is proposed to exploit a three-point bending test on short coupons to characterize the out-of-plane shear modulus. Each step of the proposed procedure is presented, and their respective uncertainty is characterized with the help of numerical simulations. The shear modulus is identified with an accuracy of about 1.5 % and is 15 % lower than the estimate obtained through Iosipescu tests. The proposed procedure shows a correlation between the ideal mesh size and the weaving period. It also reveals that the actual boundary conditions deviate from the ideal ones and hence a special attention is paid to their optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Guénon VA, Chou TW, Gillespie JW Jr (1989) Toughness properties of a three-dimensional carbon-epoxy composite. J Mater Sci 24:4168–4175

    Article  Google Scholar 

  2. Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos, Part A 30:1445–1461

    Article  Google Scholar 

  3. Mouritz AP (2008) Tensile fatigue properties of 3D composites with through-thickness reinforcement. Compos Sci Technol 68:2503–2510

    Article  Google Scholar 

  4. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. In: Studies in mathematics and its application. North Holland, Amsterdam

    Google Scholar 

  5. Oleinik OA (1984) On homogenization problem. Lect Notes Phys 195:248–272

    Article  MathSciNet  Google Scholar 

  6. Braides A, Defranceschi A (1998) Homogenization of multiple integrals. Oxford University Press

  7. Holmbom A, Persson LE, Svanstedt N (1992) A homogenization procedure for computing effective moduli and microstresses in elastic composite materials. Compos Eng 2:249–259

    Article  Google Scholar 

  8. Dasgupta A, Bhandarkar SM (1994) Effective thermomechanical beahavior of plain-weave fabric-reinforced composites using homogenization theory. J Eng Mater Technol 116:99–105

    Article  Google Scholar 

  9. Bystrom J, Jekabsons N, Varna J (2000) An evaluation of different models for prediction of elastic properties of woven composites. Compos, Part B 31:7–20

    Article  Google Scholar 

  10. Cox BN, Dadkhaha MS (1995) The macroscopic elasticity of 3D woven composites. Compos Mater 29:785–819

    Article  Google Scholar 

  11. Buchanan S, Grigorash A, Archer E, McIlhagger A, Quinn J, Stewart G (2010) Analytical elastic stiffness model for 3D woven orthogonal interlock composites. Compos Sci Technol 70:1597–1604

    Article  Google Scholar 

  12. Boisse P, Gasser A, Hagege B, Billoet JL (2005) Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. J Mater Sci 40:5955–5962

    Article  Google Scholar 

  13. Schneider J, Aboura Z, Khellil K, Benzeggagh M, Marsal D (2009) Off-plane behaviour investigation of an interlock fabric. Comptes Rendus des Journée Nationales sur les Composites 16, France, Toulouse

  14. Leclerc H (2005) Nouveaux outils de mécanique et d’analyse numérique pour le LMT. In: Séminaire du LMT Cachan. http://www.lmt.ens-cachan.fr/seminaire/transparents/leclerc-transparents.pdf

  15. Leclerc H (2007) Plateforme metil: optimisations et facilités liées à la génération de code. In: Colloque National en Calcul des Structures, Giens

  16. Besnard G, Hild F, Roux S (2006) ‘Finite-element’ displacement fields analysis from digital images: application to Portevin-Le-Châtelier bands. Exp Mech 46:789–804

    Article  Google Scholar 

  17. Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–245

    Article  Google Scholar 

  18. Leclerc H, Périé J-N, Roux S, Hild F (2009) Integrated digital image correlation for the identification of material properties. Lect Notes Comput Sci 5496:161–171

    Article  Google Scholar 

  19. Schreier HW, Braasch JR, Sutton MA (2000) Systematics erros in Digital Image Correlation caused by gray-value interpolation. Opt Eng 39:2915–2921

    Article  Google Scholar 

  20. Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse P (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370

    Article  Google Scholar 

  21. Grédiac M (2004) The use of full-field measurement methods in composite material characterization: interest and limitations. Compos, Part A 35:751–761

    Article  Google Scholar 

  22. Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  23. Kavanagh KT, Clough RW (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23

    Article  MATH  Google Scholar 

  24. Lecompte D, Smits A, Sol H, Vantomme J, Van Hemelrijck D (2006) Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int J Solids Struct 44:1643–1656

    Article  Google Scholar 

  25. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157

    Article  MATH  Google Scholar 

  26. Huysmans G, Verpoest I, Van Houtte P (1998) A poly-inclusion approach for the elastic modelling of knitted fabric composites. Acta Mater 46:3003–3013

    Article  Google Scholar 

  27. Lomov SV, Perie G, Ivanov DS, Verpoest I, Marsal D (2011) Modeling three-dimensional fabrics and three-dimensional reinforced composites: challenges and solutions. Tex Res J 81:28–41

    Article  Google Scholar 

  28. Verpoest I, Lomov SV (2005) Virtual textile composites software WiseTex: integration with micro-mechanical. permeability and structural analysis. Compos Sci Technol 65:2563–2574

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gras, R., Leclerc, H., Roux, S. et al. Identification of the Out-of-Plane Shear Modulus of a 3D Woven Composite. Exp Mech 53, 719–730 (2013). https://doi.org/10.1007/s11340-012-9683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9683-4

Keywords

Navigation