Skip to main content
Log in

CAD-based calibration and shape measurement with stereoDIC

Principle and application on test and industrial parts

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A new calibration procedure is proposed for a stereovision setup. It uses the object of interest as the calibration target, provided the observed surface has a known definition (e.g., its CAD model). In a first step, the transformation matrices needed for the calibration of the setup are determined assuming that the object conforms to its CAD model. Then the 3D shape of the surface of interest is evaluated by deforming the a priori given freeform surface. These two steps are performed via an integrated approach to stereoDIC. The measured 3D shape of a machined Bézier patch is validated against data obtained by a coordinate measuring machine. The feasibility of the calibration method’s application to large surfaces is shown with the analysis of a 2-m2 automotive roof panel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Helm JD, McNeill SR, Sutton MA (1996) Improved three-dimensional image correlation for surface displacement measurement. Opt Eng 35:1911–1920

    Article  Google Scholar 

  2. Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  3. Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical methods for solid mechanics. A full-field approach. Wiley, Weinheim

    Google Scholar 

  4. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X, Reynolds AP (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47:789–804

    Article  Google Scholar 

  5. Orteu JJ (2009) 3-D computer vision in experimental mechanics. Optics Lasers Eng 47:282–291

    Article  Google Scholar 

  6. Lei Z, Kang HT, Reyes G (2010) Full field strain measurement of resistant spot welds using 3D image correlation. Exp Mech 50:111–116

    Article  Google Scholar 

  7. Pottier T, Vacher P, Toussaint F, Louche H, Coudert T (2012) Out-of-plane testing procedure for inverse identification purpose: application in sheet metal plasticity. Exp Mech 52:951–963

    Article  Google Scholar 

  8. Salvi J, Armague X, Battle J (2002) A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recog 35:1617–1635

    Article  MATH  Google Scholar 

  9. Faugeras O, Toscani G (1987) Camera calibration for 3D computer vision. International workshop on machine vision and machine intelligence, Tokyo, pp 240–247

    Google Scholar 

  10. Morvan Y (2009) Acquisition, compression and rendering of depth and texture for multi-view video. PhD thesis, Eindhoven University of Technology

  11. Weng J, Cohen P, Herniou M (1992) Camera calibration with distortion models and accuracy evaluation. IEEE Trans Pattern Anal Mach Intell 14:965–980

    Article  Google Scholar 

  12. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22:1330–1334

    Article  Google Scholar 

  13. Arfaoui A, Plante F (2011) Camera calibration using composed cubic splines. http://lrio.copl.ulaval.ca/PDF/2011_Arfaoui_Plante_CameraCalibrationUsingComposedCubicSplines_Final.pdf

  14. Peuchot B (1993) Camera virtual equivalent model 0.01 pixel detector. Comput Med Image Graph 17:289–294

    Article  Google Scholar 

  15. Harris C, Stephens MJ (1988) A combined corner and edge detector. Proc Alvey Vision Conference, pp 147–151

  16. Brand P (1995) Reconstruction tridimensionnelle d’une scéne á partir d’une caméra en mouvement: de l’influence de la précision. PhD thesis, University Claude Bernard (Lyon I)

  17. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. Proc. 7th international joint conference on artificial intelligence, pp 674–679

  18. Luo P-F, Chao YJ, Sutton MA, Peters WH (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33:123–132

    Article  Google Scholar 

  19. Garcia D, Orteu J-J, Penazzi L (2002) A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming. J Math Proc Tech 125–126:736–742

    Article  Google Scholar 

  20. Vic-3D. Correlated solutions incorporated. http://www.correlatedsolutions.com

  21. ARAMIS. GOM, http://www.gom.com

  22. StrainMaster. LaVision, http://www.lavision.de

  23. Q-400. Dantec Dynamics. http://www.dantecdynamics.com

  24. Correli STC. Holo3. http://www.holo3.com

  25. Besnard G, Lagrange J-M, Hild F, Roux S, Voltz C (2010) Characterization of necking phenomena in high speed experiments by using a single camera. EURASIP J Image Video Proc 2010(215956):15

    Google Scholar 

  26. Besnard G, Hild F, Lagrange J-M, Martinuzzi P, Roux S (2012) Analysis of necking in high speed experiments by stereocorrelation. Int J Impact Eng 49:179–191

    Article  Google Scholar 

  27. Fusiello A (2000) Uncalibrated Euclidean reconstruction: a review. Image Vision Comput 18:555–563

    Article  Google Scholar 

  28. Kruppa E (1913) Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Hölder

  29. Faugeras OD, Luong QT, Maybank SJ (1992) Camera self-calibration: theory and experiments. Proc 2nd ECCV. Springer

  30. Faugeras O (1993) Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge

    Google Scholar 

  31. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, New York

    Book  Google Scholar 

  32. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Exp Mech 46:789–803

    Article  Google Scholar 

  33. Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-Ray computed tomography of solid foam. Comp Part A 39:1253–1265

    Article  Google Scholar 

  34. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  35. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157

    Article  MATH  Google Scholar 

  36. Dassault Systems (2008) CATIA V5 R19, Online documentation. http://www.3ds.com/products/catia/welcome/

  37. Dufour J-E, Hild F, Roux S (2013) Integrated digital image correlation for the evaluation and correction of optical distortions. Submitted for publication

  38. Yoneyama S, Kikuta H, Kitagawa A, Kitamura K (2006) Lens distorsion correction for digital image correlation by measuring rigid body displacement. Opt Eng 45:02360

    Google Scholar 

  39. Lava P, Van Paepegen W, Coppieters S, De Baere I, Debruyne D (2013) Impact of lens distorsions on strain measurements obtained by digital image correlation. Proc. SEM XII international congress and exposition on experimental and applied mechanics 3:233–238

    Google Scholar 

  40. Jalid A, Hariri S, Senelaer J-P, El Gharad A (2009) Evaluation des incertitudes de mesure sur une machine à mesurer tridimensionnelle : nouvelle méthode d’estimation des paramètres de surface et incertitude associées. Proc. 19e Congrès Français de Mécanique, Marseille (France), 8p

  41. Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. Proc IEEE Conf Comput Vision Pattern Recog 1:519–526

    Google Scholar 

  42. Vu H-H, Labatut P, Pons J-P, Keriven R (2012) High accuracy and visibility-consistent dense multiview stereo. IEEE Trans Pattern Anal Mach Intell 34:889–901

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by PSA Peugeot-Citroën, and by a grant from Région Île de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaubier, B., Dufour, JE., Hild, F. et al. CAD-based calibration and shape measurement with stereoDIC. Exp Mech 54, 329–341 (2014). https://doi.org/10.1007/s11340-013-9794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9794-6

Keywords

Navigation