Skip to main content
Log in

Experimental Study on the Perforation Process of 5754-H111 and 6082-T6 Aluminium Plates Subjected to Normal Impact by Conical, Hemispherical and Blunt Projectiles

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an experimental investigation on the perforation behaviour of 5754-H111 and 6082-T6 aluminium alloys. The mechanical response of these materials has been characterized in compression with strain rates in the range of \(10^{-3}~s^{-1} < \dot {\varepsilon } < 5 \cdot 10^{3}~s^{-1}\). Moreover, penetration tests have been conducted on 5754-H111 and 6082-T6 plates of \(4~mm\) thickness using conical, hemispherical and blunt projectiles. The perforation experiments covered impact velocities in the range of \(50~m/s < V_{0} < 200~m/s\). The initial and residual velocities of the projectile were measured and the ballistic limit velocity obtained for the two aluminium alloys for the different nose shapes. Failure mode and post-mortem deflection of the plates have been examined and the perforation mechanisms associated to each projectile/target configuration investigated. It has been shown that the energy absorption capacity of the impacted plates is the result of the collective role played by target material behaviour, projectile nose shape and impact velocity in the penetration mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Deb A, Mahendrakumar MS, Chavan C, Karve J, Blankenburg D, Storenb S (2004) Design of an aluminium-based vehicle platform for front impact safety. Int J Impact Eng 30:1055–1079

    Article  Google Scholar 

  2. Lademo OG, Engler O, Keller S, Berstad T, Pedersen KO, Hopperstad OS (2009) Identification and validation of constitutive model and fracture criterion for AlMgSi alloy with application to sheet forming. Mater Des 30:3005–3019

    Article  Google Scholar 

  3. Mordike BL, Ebert T (2001) Magnesium: properties applications potential. Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  4. Nemat-Nasser S, Guo WG, Cheng JY (1999) Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Materialia 47:3705–3720

    Article  Google Scholar 

  5. Nemat-Nasser S, Guo WG, Nesterenko VF, Indrakanti S, Gu YB (2001) Dynamic response of conventional and hot isostatically pressed ti6al4v alloys: experiments and modeling. Mech Mater 33:425–439

    Article  Google Scholar 

  6. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:37–49

    Article  Google Scholar 

  7. Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32:541–560

    Article  Google Scholar 

  8. Wilson DV (1988) Aluminium versus steel in the family car the formability factor. J Mech Work Technol 16:257–277

    Article  Google Scholar 

  9. Chen Y, Pedersen KO, Clausen AH, Hopperstad OS (2009) An experimental study on the dynamic fracture of extruded AA6xxx and AA7xxx aluminium alloys. Mater Sci Eng A 523:253–262

    Article  Google Scholar 

  10. Clausen AH, Børvik T, Hopperstad OS, Benallal A (2004) Flow and fracture characteristics of aluminium alloy aa5083h116 as function of strain rate, temperature and triaxiality. Mater Sci Eng A 364:260–272

    Article  Google Scholar 

  11. Khan AS, Liu H (2012) Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling. Int J Plast 36:1–14

    Article  Google Scholar 

  12. Langseth M, Hopperstad OS, Hanssen AG (1998) Crash behaviour of thin-walled aluminium members. Thin-Walled Struct 32:127–150

    Article  Google Scholar 

  13. Børvik T, Clausen AH, Eriksson M, Berstad T, Hopperstad OS, Langseth M (2005) Experimental and numerical study on the perforation of AA6005-T6 panels. Int J Impact Eng 32:35–64

    Article  Google Scholar 

  14. Børvik T, Forrestal MJ, Warren TL (2010) Perforation of 5083-H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets. Exp Mech 50:969–978

    Article  Google Scholar 

  15. Børvik T, Olovsson L, Dey S, Langseth M (2011) Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates. Int J Impact Eng 38:577–589

    Article  Google Scholar 

  16. Forrestal MJ, Børvik T, Warren TL (2010) Perforation of 7075-t651 aluminum armor plates with 7.62 mm APM2 bullets. Exp Mech 50:1245–1251

    Article  Google Scholar 

  17. Forrestal MJ, Luk VK, Brar NS (1990) Perforation of aluminum armor plates with conical nose projectiles. Mech Mater 10:97–105

    Article  Google Scholar 

  18. Gupta NK, Iqbal MA, Sekhon GS (2006) Experimental and numerical studies on the behaviour of thin aluminium plates subjected to impact by blunt and hemispherical nosed projectiles. Int J Impact Eng 32:1921–1944

    Article  Google Scholar 

  19. Gupta NK, Iqbal MA, Sekhon GS (2007) Effect of projectile nose shape, impact velocity and target thickness on deformation behaviour of aluminium plates. Int J Solids Struct 44:3411–3439

    Article  Google Scholar 

  20. Gupta NK, Iqbal MA, Sekhon GS (2008) Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates. Int J Impact Eng 35:37–60

    Article  Google Scholar 

  21. Iqbal MA, Khan SH, Ansari R, Gupta NK (2013) Experimental and numerical studies of double-nosed projectile impact on aluminum plates. Int J Impact Eng 54:232–245

    Article  Google Scholar 

  22. Rosenberg Z, Forrestal MJ (1988) Perforation of aluminum plates with conical nosed rods-additional data and discussion. J Appl Mech 55:236–239

    Article  Google Scholar 

  23. Børvik T, Clausen AH, Eriksson M, Berstad T, Hopperstad OS, Langseth M (2005) Experimental and numerical study on the perforation of AA6005-T6 panels. Int J Impact Eng 32:35–64

    Article  Google Scholar 

  24. Iwamoto T, Yokoyama T (2012) Effects of radial inertia and end friction in specimen geometry in split hopkinson pressure bar tests: a computational study. Mech Mater 51: 97–109

    Article  Google Scholar 

  25. Jankowiak T, Rusinek A, Lodygowski T (2011) Validation of the Klepaczko–Malinowski model for friction correction and recommendations on split hopkinson pressure bar. Finite Elem Anal Des 47:1191–1208

    Article  Google Scholar 

  26. Oosterkamp L, Ivankovic A, Venizelos G (2000) High strain rate properties of selected aluminium alloys. Mater Sci Eng A 278(1):225–235

    Article  Google Scholar 

  27. Winzer R, Glinicka A (2011) The static and dynamic compressive behaviour of selected aluminium alloys. Eng Trans 59:85–100

    Google Scholar 

  28. Moćko W, Rodríguez-Martínez JA, Kowalewski ZL, Rusinek A (2012) Compressive viscoplastic response of 6082-T6 and 7075-T6 aluminium alloys under wide range of strain rate at room temperature: experiments and modelling. Strain 48:498–509

    Article  Google Scholar 

  29. Rusinek A, Mandrea A, Rebegea S (2010) Wasp sotware for waves analyze. Users Manual, version 1

  30. Jovic C, Wagner D, Herve P, Gary G, Lazzarotto L (2006) Mechanical behaviour and temperature measurement during dynamic deformation on split hopkinson bar of 304l stainless steel and 5754 aluminium alloy. J Phys IV 134:1279–1285

    Google Scholar 

  31. Wowk DL (2008) Effects of prestrain on the strain rate sensitivity of AA5754 sheet. Ph.D. thesis, Kingston, Ontario

  32. El-Magd E, Abouridouane M (2003) Influence of strain rate and temperature on the compressive ductility of al, mg and ti alloys. J Phys IV 110:15–20

    Google Scholar 

  33. El-Magd E, Abouridouane M (2006) Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. Int J Impact Eng 32:741–758

    Article  Google Scholar 

  34. Franz FA, Duffy J (1972) The dynamic stress-strain behaviour in torsion of 1100-O aluminium subjected to a sharp increase in strain rate. J Appl Mech 39:939–945

    Article  Google Scholar 

  35. Kpenyigba K, Jankowiak T, Rusinek A, Pesci R (2013) Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation. Thin-Walled Struct 65:93–104

    Article  Google Scholar 

  36. Rodríguez-Martínez JA, Rusinek A, Pesci R, Zaera R (2013) Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles. Int J Solids Struct 50:339–351

    Article  Google Scholar 

  37. Rodríguez-Martínez JA, Rusinek A, Chevrier P, Bernier R, Arias A (2010) Temperature measurements on ES steel sheets subjected to perforation by hemispherical projectiles. Int J Impact Eng 37:828–841

    Article  Google Scholar 

  38. Recht RF, Ipson TW (1963) Ballistic perforation dynamics. J Appl Mech 30:384–390

    Article  Google Scholar 

  39. Woodward RL (1984) The interrelation of failure modes observed in the penetration of metallic targets. Int J Impact Eng 2:121–129

    Article  MathSciNet  Google Scholar 

  40. Mercier S, Molinari A (2003) Predictions of bifurcations and instabilities during dynamic extensions. Int J Solids Struct 40:1995–2016

    Article  MATH  Google Scholar 

  41. Mercier S, Molinari A (2004) Analysis of multiple necking in rings under rapid radial expansion. Int J Impact Eng 4:403–419

    Article  Google Scholar 

  42. Rodríguez-Martínez JA, Vadillo G, Fernández-Sáez J, Molinari A (2013) Identification of the critical wavelength responsible for the fragmentation of ductile rings expanding at very high strain rates. J Mech Phys Solids 61:1357–1376

    Article  MathSciNet  Google Scholar 

  43. Atkins AG, Khan MA, Liu JH (2013) Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles. Int J Solids Struct 50:339–351

    Article  Google Scholar 

  44. Rodríguez-Martínez JA, Pesci R, Rusinek A, Arias A, Zaera R, Pedroche DA (2010) Thermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles at different temperatures. Int J Solids Struct 47:1268–1284

    Article  MATH  Google Scholar 

  45. Rodríguez-Martínez JA, Rusinek A, Arias A (2011) Thermo-viscoplastic behaviour of 2024-T3 aluminium sheets subjected to low velocity perforation at different temperatures. Thin-Walled Struct 49:819–832

    Article  Google Scholar 

  46. Rodríguez-Martínez JA, Vadillo G, Zaera R, Fernández-Sáez J (2013) On the complete extinction of selected imperfection wavelengths in dynamically expanded ductile rings. Mech Mater 60:107–120

    Article  Google Scholar 

  47. Lee YW, Wierzbicki T (2005) Fracture prediction of thin plates under localized impulsive loading. part ii: discing and petalling. Int J Impact Eng 31:1277–1308

    Article  Google Scholar 

  48. Wierzbicki T (1999) Petalling of plates under explosive and impact loading. Int J Impact Eng 22:935–954

    Article  Google Scholar 

  49. Børvik T, Langseth M, Hopperstad OS, Malo KA (2002) Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses part i: experimental study. Int J Impact Eng 27:19–35

    Article  Google Scholar 

  50. Backman ME, Goldsmith W (1978) The mechanics of penetration of projectiles into targets. Int J Eng Sci 16:1–99

    Article  Google Scholar 

  51. Børvik T, Hopperstad OS, Malo MLKA (2003) Effect of target thickness in blunt projectile penetration of weldox 460 E steel plates. Int J Impact Eng 28:413–464

    Article  Google Scholar 

  52. Corran RSJ, Shadbolt PJ, Ruiz C (1983) Impact loading of plates an experimental investigation. Int J Impact Eng 1:3–22

    Article  Google Scholar 

  53. Dey S, Børvik T, Hopperstad OS, Leinum JR, Langseth M (2004) The effect of target strength on the perforation of steel plates using three different projectile nose shapes. Int J Impact Eng 30:1005–1038

    Article  Google Scholar 

  54. Pereira JM, Lerch BA (2001) Effects of heat treatment on the ballistic impact properties of inconel 718 for jet engine fan containment applications. Int J Impact Eng 25:715–733

    Article  Google Scholar 

  55. Aly SY, Li QM (2008) Critical impact energy for the perforation of metallic plates. Nucl Eng Des 238:2521–2528

    Article  Google Scholar 

  56. Corbett CG, Reid SR, Johnson W (1996) Impact loading of plates and shells by free-flying projectiles: a review. Int J Impact Eng 18:141–230

    Article  Google Scholar 

  57. López-Puente J, Arias A, Zaera R, Navarro C (2005) The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. Int J Impact Eng 32:321–336

    Article  Google Scholar 

Download references

Acknowledgments

The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2011-24068) for the financial support received which allowed conducting part of this work.

J. A. Rodríguez-Martínez thanks Professors R. Zaera and D. Rittel for helpful discussions on dynamic penetration problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Rodríguez-Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Millán, M., Vaz-Romero, A., Rusinek, A. et al. Experimental Study on the Perforation Process of 5754-H111 and 6082-T6 Aluminium Plates Subjected to Normal Impact by Conical, Hemispherical and Blunt Projectiles. Exp Mech 54, 729–742 (2014). https://doi.org/10.1007/s11340-013-9829-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9829-z

Keywords

Navigation