Skip to main content
Log in

An Experimental Investigation on the Influence of Annealed Microstructure on Wave Propagation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this work grain growth associated with isochronous annealing in polycrystalline pure copper is studied using nonlinear ultrasonic method. In isochronous annealing, holding time is constant but annealing temperatures vary. It is observed that, grain growth due to isochronous annealing significantly influences the ultrasonic nonlinearity parameter, β. A decrease in nonlinearity parameter with increase in grain size is noticed. Further, micro-hardness measurements as well as metallographic results are presented to underscore the utility of the nonlinear ultrasonic method in gauging the progress of annealing. As the time and effort involved in this method is less, with suitable calibration, this method may be gainfully employed for determination of grain size on annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frouin J, Sathish S, Matikas TE, Na JK (1999) Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti6Al4V. J Mater Res 14:1295–1298

    Article  Google Scholar 

  2. Cantrell J, Yost W (2001) Nonlinear ultrasonic characterization of fatigue microstructures. Int J Fatigue 23:487–490

    Article  Google Scholar 

  3. Cantrell J (2006) Dependence of micro elasticplastic nonlinearity of martensitic stainless steel on fatigue damage accumulation. J Appl Phys 100:063508

    Article  Google Scholar 

  4. Sagar SP, Das S, Parida N, Bhattacharya D (2006) Non-linear ultrasonic technique to assess fatigue damage in structural steel. Scripta Mater 55:199–202

    Article  Google Scholar 

  5. Ramkumar K, Sivaramanivas R, Karthik T, Kommareddy V, Ramadurai B, Ganesan B, Nieters E, Gigliotti M, Keller M, Shyamsunder M (2007) Quantification of fatigue damage accumulation using nonlinear ultrasound measurements. Int J Fatigue 2:2032–2039

    Google Scholar 

  6. Metya A, Parida N, Bhattacharya D, Bandyopadhyay N, Palit Sagar S (2007) Assessment of localized plastic deformation during fatigue in polycrystalline copper by nonlinear ultrasonic. Metall Mater Trans A 38(A):3087–3092

    Article  Google Scholar 

  7. Bin W, Bing-sheng Y, Cun-fu H (2011) Nonlinear ultrasonic characterizing online fatigue damage and in situ microscopic observation. T Nonferr Met Soc 21:2597–2604

    Article  Google Scholar 

  8. Rao VVSJ, Kannan E, Prakash RV, Balasubramaniam K (2008) Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351. J Appl Phys 104:123508–9

    Article  Google Scholar 

  9. Rao VVSJ, Kannan E, Prakash RV, Balasubramaniam K (2009) Observation of two stage dislocation dynamics from nonlinear ultrasonic response during the plastic deformation of AA7175-T7351 aluminum alloy. Mater Sci Eng 512:92–99

    Article  Google Scholar 

  10. Baby S, Nagaraja Kowmudi B, Omprakash C, Satyanarayana D, Balasubramaniam K, Kumar V (2008) Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique. Scripta Mater 59:818–821

    Article  Google Scholar 

  11. Valluri JS, Balasubramaniam K, Prakash RV (2010) Creep damage characterization using non-linear ultrasonic techniques. Acta Mater 58:2079–2090

    Article  Google Scholar 

  12. Balasubramaniam K, Valluri J, Prakash R (2011) Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Mater Charact 62(3):275–286

    Article  Google Scholar 

  13. Kim C (2012) Creep characterization in advanced heat-resistant steel using ultrasonic nonlinearity technique. Mater Trans 53:2028–2033

    Article  Google Scholar 

  14. Kim C, Park IK, Jhang KY (2009) Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25 Cr -1-Mo steel. NDT & E Int 42:204–209

    Article  Google Scholar 

  15. Ruiz A, Ortiz N, Medina A, Kim JY, Jacobs L (2013) Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel. NDT & E Int 54:19–26

    Article  Google Scholar 

  16. Matlack KH, Wall JJ, Kim JY, Qu J, Jacobs LJ, Viehrig HW (2012) Evaluation of radiation damage using nonlinear ultrasound. J Appl Phys 111:054911–13

    Article  Google Scholar 

  17. Mukhopadhyay A, Sarkar R, Punnose S, Valluri J, Nandy TK, Balasubramaniam K (2012) Scatter in nonlinear ultrasonic measurements due to crystallographic orientation change induced anisotropy in harmonics generation. J Appl Phys 11: 054905–11

    Article  Google Scholar 

  18. Breazeale MA, Ford J (1965) Ultrasonic studies of the nonlinear behavior of solids. J Appl Phys 6:3486–3490

    Article  Google Scholar 

  19. Viswanath A, Rao B, Mahadevan S, Jayakumar T, Raj B (2010) Microstructural characterization of M250 grade maraging steel using nonlinear ultrasonic techniqu. J Mater Sci 45:6719–6726

    Article  Google Scholar 

  20. Li W, Cho Y, Lee J, Achenbach J (2013) Assessment of heat treated inconel X-750 alloy by Nonlinear Ultrasonics. Exp Mech 53(5):775–781

    Article  Google Scholar 

  21. Mini RS, Balasubramaniam K, Ravindran P (2014) Characterization of annealing in polycrystalline copper using harmonic generation technique. AIP Conf. Proc. 1581:675–681

  22. Rios PR, Siciliano Jr F, Sandim HRZ, Plaut RL, Padilha AF (2005) Nucleation and growth during recrystallization. Mater Res 8:225–238

    Article  Google Scholar 

  23. Campbell F (2008) Elements of metallurgy and engineering alloy. A S M Int., Inc.

  24. Cantrell H (2003) Ultrasonic nondestructive evaluation: engineering and biological material characterization. CRC Press LLC, Boca Raton, Florida, United States

  25. Thompson RB, Buck O, Thompson DO (1976) Higher harmonics of finite amplitude ultrasonic waves in solids. J Acoust Soc Am 59:1087–1094

    Article  Google Scholar 

  26. Liu S, Croxford A, Neild S, Zhou Z (2011) Effects of experimental variables on the nonlinear harmonic generation technique. IEEE Trans Ultrason Ferroelectr Freq Control 58:1442–1451

    Article  Google Scholar 

  27. Xiang Y, Deng M, Xuan FZ, Liu CJ (2012) Effect of precipitate-dislocation interactions on generation of nonlinear lamb waves in creep-damaged metallic alloy. J of Appl Phys 111(10):104905

    Article  Google Scholar 

  28. Kim C, Hyun C, Park I, Jhang K (2012) Ultrasonic characterization for directional coarsening in a nickel-based superalloy during creep exposure. J Nucl Sci Technol 49:366–372

    Article  Google Scholar 

  29. Lu K, Sui M (1993) An explanation to the abnormal Hall-Petch relation in nanocrystalline material. Scripta Mater 28:1465–1470

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Prof. M. Kamaraj and Prof. M. Balasubramanian, Metallurgical and Material Engg., IIT Madras for providing research facilities for heat treatment and metallographic studies. One of the author (R.S. Mini) also acknowledges the sponsorship provided by AICTE-QIP (Government of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.S. Mini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mini, R., Balasubramaniam, K. & Ravindran, P. An Experimental Investigation on the Influence of Annealed Microstructure on Wave Propagation. Exp Mech 55, 1023–1030 (2015). https://doi.org/10.1007/s11340-015-0003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0003-7

Keywords

Navigation