Skip to main content
Log in

Quantitative Visualization of Human Cortical Bone Mechanical Response: Studies on the Anisotropic Compressive Response and Fracture Behavior as a Function of Loading Rate

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Blast and impact events regularly cause damage to human tissues. Efforts to improve protective gear are made through numerical simulation of these events where human tissues are exposed to high-rate loading conditions. Accurate simulation results can only be obtained if constitutive models are used that are based on precisely carried out experimental studies. Experimental studies on bone are challenging because of the relatively brittle nature of bone as well as the importance of the bone being in a hydrated state prior to experiments to avoid changing the mechanical properties. Past studies have utilized strain gages which require a period of drying time to bond strain gages to the surface of the bone. In this study, rate dependent fracture and compressive responses of wet human femur bone are investigated with in situ quantitative visualization. The fracture properties of cortical bone are studied transverse to the longitudinal axis of the bone up to high stress intensity factor rates, and the rate dependent compressive response is investigated in both longitudinal and transverse directions. The rate dependent nature of the fracture response, and the compressive behavior of human cortical bone over a range of rates from 0.001–1000 s-1 is discussed with the aid of quantitative visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Chu TC, Ransom WF, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244. doi:10.1007/bf02325092

    Article  Google Scholar 

  2. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital image correlation method. Image Vis Comput 1(3):133–139. doi:10.1016/0262-8856(83)90064-1

    Article  Google Scholar 

  3. Moussawi A, Lubineau G, Florentin E, Blaysat B (2013) The constitutive compatibility method for identification of material parameters based on full-field measurements. Comput Method Appl M 265:1–14. doi:10.1016/j.cma.2013.06.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Blaysat B, Florentin E, Lubineau G, Moussawi A (2012) A dissipation gap method for full-field measurement-based identification of elasto-plastic material parameters. Int J Numer Meth Eng 91(7):685–704. doi:10.1002/nme.4287

    Article  MathSciNet  MATH  Google Scholar 

  5. Florentin E, Lubineau G (2012) Identification of the parameters of an elastic material model using the Constitutive Equation Gap Method. Comput Mech 46(4):521–531. doi:10.1007/s00466-010-0496-y

    Article  MathSciNet  Google Scholar 

  6. Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK (2005) A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct 28:345–371. doi:10.1111/j.1460-2695.2005.00878.x

    Article  Google Scholar 

  7. Asqharpour Z, Zioupos P, Graw M, Peldschus S (2014) Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms. Forensic Sci Int 236:109–116. doi:10.1016/j.forsciint.2013.11.010

    Article  Google Scholar 

  8. Ural A, Zioupos P, Buchanan D, Vashishth D (2011) The effect of strain rate on fracture toughness of human cortical bone: a finite element study. J Mech Behav Biomed Mater 4(7):1021–1032. doi:10.1016/j.jmbbm.2011.03.011

    Article  Google Scholar 

  9. Ntim MM, Bembey AK, Ferguson VI, Bushby AJ (2005) Hydration effects on the viscoelastic properties of collagen. In: Proceedings: MRS Proc., 898E. L05-02.01-05. doi:10.1557/proc-0898-l05-02

  10. Yamashita J, Furman BR, Rawls HR, Wang X, Agrawat CM (2001) The use of dynamic mechanical analysis to assess viscoelastic properties of human cortical bone. J Biomed Mater Res 58:47–53. doi:10.1002/1097-4636(2001)58:1%3C47::aid-jbm70%3E3.0.co;2-u

    Article  Google Scholar 

  11. Zimmerman EA, Gludovatz B, Schaible E, Busse B, Ritchie RO (2014) Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials 35:5472–5481. doi:10.1016/j.biomaterials.2014.03.066

    Article  Google Scholar 

  12. Adharpurapu RR, Jiang F, Vecchio KS (2006) Dynamic fracture of bovine bone. Mater Sci Eng C 26:1325–1332. doi:10.1016/j.msec.2005.08.008

    Article  Google Scholar 

  13. Kulin RM, Jiang F, Vecchio KS (2011) Effects of age and loading rate on equine bone failure. J Mech Behav Biomed Mater 4:57–75. doi:10.1016/j.jmbbm.2010.09.006

    Article  Google Scholar 

  14. Norman TL, Vashishth D, Burr DB (1995) Fracture toughness of human bone under tension. J Biomech 28(3):309–320. doi:10.1016/0021-9290(94)00069-g

    Article  Google Scholar 

  15. Zioupos P, Currey JD (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22:57–66. doi:10.1016/s8756-3282(97)00228-7

    Article  Google Scholar 

  16. Wang X, Shen X, Li X, Mauli Agrawal C (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7. doi:10.1016/s8756-3282(01)00697-4

    Article  Google Scholar 

  17. McElhaney J (1966) Dynamic response of bone and muscle tissue. J Appl Phys 21(4):1231–1236

    Google Scholar 

  18. McElhaney J, Fogle J, Byars E, Weaver G (1964) Effect of embalming on the mechanical properties of beef bone. J Appl Phys 19(6):1234–1236

    Google Scholar 

  19. Ohman C, Dall’Ara E, Baleani M, Van Sint JS, Viceconti M (2008) The effects of embalming using a 4 % formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech 23:1294–1298. doi:10.1016/j.clinbiomech.2008.07.007

    Article  Google Scholar 

  20. Lewis JL, Goldsmith W (1973) A biaxial split Hopkinson bar for simultaneous torsion and compression. Rev Sci Instrum 44:811–813. doi:10.1063/1.1686253

    Article  Google Scholar 

  21. Lewis JL, Goldsmith W (1975) The dynamic fracture and prefracture response of compact bone by split Hopkinson bar methods. J Biomech 8:27–40. doi:10.1016/0021-9290(75)90040-8

    Article  Google Scholar 

  22. Tanabe Y, Tanaka S, Sakamoto M, Hara T, Takahashi H, Koga Y (1991) Influence of loading rate and anisotropy of compact bone. J Phys III 1(C3):305–310. doi:10.1051/jp4:1991343

    Google Scholar 

  23. Ferreira F, Vaz MA, Simoes JA (2006) Mechanical properties of bovine cortical bone at high strain rate. Mater Charact 57:71–79. doi:10.1016/j.matchar.2005.11.023

    Article  Google Scholar 

  24. Lee OS, Park JS (2011) Dynamic deformation of bovine femur using SHPB. Mech Sci Technol 25(9):2211–2215. doi:10.1007/s12206-011-0602-x

    Article  Google Scholar 

  25. Gunnarsson CA, Sanborn B, Foster M, Moy P, Weerasooriya T (2012) Initiation fracture toughness of human cortical bone as a function of loading rate. In: Proceedings: Soc Exp Mech Costa Mesa, CA. doi: 10.1007/978-1-4614-4238-7_7

  26. Gunnarsson CA, Sanborn B, Foster M, Weerasooriya T (2013) Strain and energy based failure criteria for fracture behavior of human cortical bone as a function of loading rate. In: Proceedings: Soc Exp Mech Lombard, Il. doi:10.1007/978-1-4614-4238-7_7

  27. Sanborn B, Gunnarsson CA, Foster M, Moy P, Weerasooriya T (2014) Effect of loading rate and orientation on the compressive response of human cortical bone. ARL-TR-6907

  28. Gustafson MB, Martin RB, Gibson B, Storms DH, Stover SM, Gibeling J, Griffin L (1996) Calcium buffering is required to maintain bone stiffness in saline solution. J Biomech 29(9):1191–1194. doi:10.1016/0021-9290(96)00020-6

    Article  Google Scholar 

  29. ASTM C1421-10 (2010) In: Annual Book of ASTM standards. ASTM, West Conshohocken, PA

  30. Casem D, Weerasooriya T, Moy P (2005) Inertial effects of quartz force transducers embedded in a split hopkinson pressure bar. Exp Mech 45(4):368–376. doi:10.1177/0014485105056090

    Article  Google Scholar 

  31. Chen W, Song B (2010) Split Hopkinson (Kolsky) Bar. Springer, New York, pp 29–77

    Google Scholar 

  32. Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low impedance materials. Exp Mech 39:81–85. doi:10.1007/bf02331109

    Article  Google Scholar 

  33. ASTM E1820-11 (2011) In: Annual Book of ASTM Standards. ASTM, West Conshohocken, PA

  34. Dong XN, Zhang X, Guo XE (2005) Interfacial strength of cement lines in human cortical bone. Mech Chem Biosyst 2(2):63–68

    Google Scholar 

  35. Dong XN, Gou XE (2004) Geometric determinants to cement line debonding and osteonal lamellae failure in osteon pushout tests. J Biomech Eng 126(3):387–390. doi:10.1115/1.1762901

    Article  Google Scholar 

  36. Nalla RK, Kinney JH, Ritchie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2:164–168. doi:10.1038/nmat832

    Article  Google Scholar 

  37. Nalla RK, Kruzic JJ, Kinney JH, Balooch M, Ager JW III, Ritchie RO (2006) Role of microstructure in the aging related deterioration of the toughness of human cortical bone. Mater Sci Eng C 26(8):1251–1260. doi:10.1016/j.msec.2005.08.021

    Article  Google Scholar 

  38. Vashishth D, Behiri JC, Bonfield W (1997) Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech 30(8):763–769. doi:10.1016/s0021-9290(97)00029-8

    Article  Google Scholar 

  39. Vashishth D, Tanner KE, Bonfield W (2000) Contribution, development and morphology of microcracking in cortical bone during crack propagation. J Biomech 33(9):1169–1174. doi:10.1016/s0021-9290(00)00010-5

    Article  Google Scholar 

  40. Vashishth D (2004) Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech 37(6):943–946. doi:10.1016/j.jbiomech.2003.11.003

    Article  Google Scholar 

  41. Vashishth D, Tanner KE, Bonfield W (2003) Experimental validation of a microcracking based toughening mechanism for cortical bone. J Biomech 36(1):121–124. doi:10.1016/s0021-9290(02)00319-6

    Article  Google Scholar 

  42. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405. doi:10.1016/0021-9290(76)90178-0\

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Weerasooriya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanborn, B., Gunnarsson, C.A., Foster, M. et al. Quantitative Visualization of Human Cortical Bone Mechanical Response: Studies on the Anisotropic Compressive Response and Fracture Behavior as a Function of Loading Rate. Exp Mech 56, 81–95 (2016). https://doi.org/10.1007/s11340-015-0060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0060-y

Keywords

Navigation