Skip to main content
Log in

Moduli Determination at Different Temperatures by an Ultrasonic Waveguide Method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A novel ultrasonic waveguide based technique for measuring the moduli of elastic isotropic material as a function of temperature using ultrasonic guided wave modes is presented here. This technique can be utilized for measuring Young’s modulus (E) and Shear Modulus (G) of multiple material using the guided ultrasonic L(0, 1) and T(0, 1) wave modes respectively over a wide range of temperatures (demonstrated here from room temperature to 1200 °C). The specimens used in the experiments here have special embodiments (for instance, a bend) at one end of the waveguide and an ultrasonic guided wave generator (transducer) at the other end for obtaining reflected signals in a pulse-echo mode. The far end of the waveguides with the embodiment is kept inside a heating device such as a temperature-controlled furnace. The time of flight difference (δTOF) were used to measure the moduli at different temperatures. Several materials were tested and the comparison between literature values and measured values were found to be in agreement, for both elastic moduli (E and G) measurements, as a function of temperature. This technique provides significant reduction in time, effort and cost over conventional means of measurement of temperature dependence of elastic moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. McLellan RB, Ishikawa T (1987) The elastic properties of aluminum at high temperatures. J Phys Chem Solid 48(7):603–606

    Article  Google Scholar 

  2. Ufuah E (2012) Characterization of elevated temperature mechanical properties of butt-welded connections made with HS Steel Grade S420M. Proceedings of the World Congress on Engineering Vol III, WCE 2012, London, U.K

  3. Outinen J, Kaitila O, Makelainen P et al. (2000) A study for the development of the design of steel structures in fire conditions. 1st International Workshop of Structures in Fire, Copenhagen, Denmark

  4. Kumaran SM, Rajendran V, Jayakumar T, Palanichamy P, Shankar P, Raj B (2008) First differential of temperature dependent ultrasonic parameters as an effective tool for identifying precipitation reactions in a slow heat-treated 8090 Al–Li alloy. J Alloys Compd 464:150–156

    Article  Google Scholar 

  5. Bourgeois L, Nadal MH, Clement F, Chapuis GR (2007) Determination of elastic moduli at high temperatures for uranium–vanadium alloy and pure plutonium by an ultrasonic method. J Alloys Compd 444–445:261–264

    Article  Google Scholar 

  6. Sather A (1968) Ultrasonic buffer rod technique for the high temperature measurement of the elastic moduli of the short specimens. J Acoustic Soc Am 43:1291–1294

    Article  Google Scholar 

  7. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York

    Google Scholar 

  8. Nadal MH, Hubert C, Ravel-Chapuis G (2007) Shear modulus determination versus temperature up to the melting point using a laser-ultrasonic device. J Alloys Compd 444–445:265–267

    Article  Google Scholar 

  9. Lim RS, Kruger SE, Lamouche G, Marple BR (2005) Elastic modulus measurements via laser-ultrasonic and knoop indentation techniques in thermally sprayed coatings. Thermal Spray Technol 14:52–60

    Article  Google Scholar 

  10. Brammer JA, Percival CM (1970) Elevated-temperature elastic moduli of 2024 aluminum obtained by a laser-pulse technique. Experiment Mech 10(6):245–250

    Article  Google Scholar 

  11. Bao Y, Zhang H, Ahmadi M, Karim MA, Wu HF (2014) Measurements of Young’s and shear moduli of rail steel at elevated temperatures. Ultrasonics 54(3):867–873

    Article  Google Scholar 

  12. Cook LS, Wolfenden A, Ludtka GM (1990) Dynamic elastic modulus measurements in materials. Copy Right ASTM, STP 1045:81–95

    Google Scholar 

  13. Hill WH, Shimmin KD (1961) Elevated temperature dynamic elastic moduli of various metallic materials. Wadd TechniG l Report 60:438–445

    Google Scholar 

  14. Farraro R, McLellan RB (1977) Temperature dependence of the young’s modulus and shear modulus of pure Nickel, Platinum and Molybdenum. Metallurgical Trans A 8(A):1563–1565

    Article  Google Scholar 

  15. Lamidieu P, Gault C (1986) Improved ultrasonic measurements of Young’s modulus at high temperature in composite ceramics. Mater Sci Eng 77:11–15

    Article  Google Scholar 

  16. Ledbetter HM (1981) Stainless-steels elastic constants at low temperature. J Appl Phys 52(3):1587–1590

    Article  Google Scholar 

  17. Ledbetter HM (1982) Temperature behavior of Young’s moduli of forty engineering alloys. Cryogenics 22:653–656

    Article  Google Scholar 

  18. Gault C, Platon F, Le Bras D (1985) Ultrasonic measurement of young’s modulus of AL2O3 based refractories at high temperatures. Mater Sci Eng 74:105–111

    Article  Google Scholar 

  19. Baudson H, Debucquoy F, Huger M, Gault C, Rigaud (1999) Ultrasonic measurement of Young’s modulus MgO/C refractories at high temperature. J Europe Ceramic Soc 19:1895–1901

    Article  Google Scholar 

  20. Bichkov YF, Rozanov AN, Skorov DM (1957) Young’s modulus of Zirconium-Niobium alloys. J Nuclear Energ 5:408–412

    Google Scholar 

  21. High temperature characteristics of stainless steel. Distributed by Nickel Development Institute (NiDI) and Produced by American Iron and Steel Institute. www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/High_TemperatureCharacteristicsofStainlessSteel_9004_.pdf . Last accessed 10 March 2015

  22. Lynnworth LC (1989) Ultrasonic measurements for process control: theory, techniques and applications. Academic, New York

    Google Scholar 

  23. Balasubramaniam K, Shah VV, Costley D, Bourdeaux G, Singh JP (1999) High temperature Ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts. Rev Sci Instruments 70(12):1–6

    Article  Google Scholar 

  24. Balasubramaniam K, Shah VV, Costley D et al. (2001) U.S Patent no: 6,296,385

  25. Prasad VSK, Balasubramaniam K, Kannan E, Geisinger KL (2008) Viscosity measurements of melts at high temperatures using ultrasonic guided waves. J Mater Process Technol 207:315–320

    Article  Google Scholar 

  26. Pandey JC, Raj M, Lenka SN, Periyannan S, Balasubramaniam K (2011) Measurement of viscosity and melting characteristics of mould powder slags by ultrasonics. J Iron Making Steel Making 38:74–79

    Article  Google Scholar 

  27. Huang KN, Huang CF, Li YC et al. (2003) Temperature measurement system based on ultrasonic phase-shift method, IEEE 294–295

  28. Hanscombe AP, Richards NP (1992) Distributed temperature sensor, EP 0465029A2

  29. Tsai WY, Chen HC, Liao TL (2005) An ultrasonic air temperature measurement system with self-correction function for humidity. Measure Sci Technol 16:548–556

    Article  Google Scholar 

  30. Jen CK, Legoux JG (1998) Clad ultrasonic waveguides with reduced trailing echoes. U.S Patent no: 5828274

  31. Cawley P, Cegla FB (2010) Ultrasonic non-destructive testing. U.S patent no: 8381592

  32. Breeuwer R, Faber AJ, Maria MH et al. (2010) Remote ultrasonic transducer system. U.S Patent no: 005247

  33. Jen CK, Thanh Nguyen KY, Bin Cao et al. (1996) Ultrasonic sensors for on-line monitoring of castings and moulding at elevated temperatures U.S Patent no: 5951163

  34. Rosselson BS, Esin AJ, Jones LJ et al. (2000) Ultrasonic sensors for very high temperatures and pressures. U.S Patent no: 6073492

  35. Sheen SH, Chien HT, Raptis AC (1995) An in-line ultrasonic viscometer. Rev Progress Quantitative Non-Destruct Eval 14(A):1151–1158

    Google Scholar 

  36. Lunghofer JG, Tom Brannon C, Conner BL et al. (1999) Self-verifying temperature sensor U.S patent no: 5887978

  37. Vogt TK, Lowe MJS, Cawley P (2004) Measurement of the material properties of viscous liquids using ultrasonic guided waves. IEEE Trans Ultrason Ferroelectr Freq Control 51:737–747

    Article  Google Scholar 

  38. McSkimin HJ, Basking NJ, Ridge et al. (1960) Measurement of dynamic properties of materials, U.S. Patent no: 2966058

  39. Greenwood MS, Bamberger JA (2002) Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control. Ultrasonics 39:623–630

    Article  Google Scholar 

  40. Rose JL (1999) Ultrasonic waves in solid Media, Cambridge University Press. Chapter; Wave in rods: 143–152

  41. Pavlakovic BN, Lowe MJS, Cawley P, Alleyne DN (1997) “DISPERSE: A general purpose program for creating dispersion curves. Rev Progress Quantitative Non-Destruct Eval 16:185–192

    Article  Google Scholar 

  42. Special Metals Corporation (2009) Publication Number SMC–079:1–8. http://www.specialmetals.com/assets/documents/alloys/inconel/inconel-alloy-690.pdf

  43. Periyannan S, Balasubramaniam K (2012) Fuel tube spacer-pad spot-weld quality estimation using guided ultrasonic waves. AIP Conf Proc 1430(1):1655–1662

    Google Scholar 

  44. Periyannan S, Balasubramaniam K (2015) Multi-level temperature measurements using ultrasonic guided waves. Measurement 61:185–191

    Article  Google Scholar 

  45. Roylance D (2001) Stress-strain curves doc. MIT, Cambridge, p 02139

    Google Scholar 

  46. Periyannan S, Balasubramaniam K (2014) Temperature dependent E and G measurement of materials using ultrasonic guided waves. AIP Conf Proc 1581(1):256–263

    Article  Google Scholar 

  47. Balasubramaniam K, Periyannan S (2015) A novel waveguide technique for the simultaneous measurement of temperatures dependent properties of materials. WO 2015/008299 A2

  48. Kanthal-D Data sheet updated 2012-06-20, by www.kanthal.com/ Last Accessed Mar 2015

  49. Special Metals Corporation Publications are Nickel 200 and Nickel 201, page 1-20 by www.specialmetals.com/. Last accessed Feb 2015

  50. Nadal MH, LePoac P (2003) Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation. J Appl Phys 93(5):2472–2480

    Article  Google Scholar 

  51. Overton WC, Gaffney J (1955) Temperature variation of the elastic constants of cubic elements. I Copper Phys Rev 98(4):969–977

    Google Scholar 

  52. Garofalo F (1960) Temperature dependence of the elastic moduli of several stainless steels. Proc ASTM 60:738–749

    Google Scholar 

  53. Sutton PM (1953) Variation of the elastic constants of crystalline aluminum with temperature between 63 °K and 773 °K. Phys Rev 91:816

    Article  Google Scholar 

  54. Koster W (1943) Z Metallk 3: 57-67

  55. Periyannan S, Balasubramaniam K (2015) Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method. Rev Sci Instruments 86:114903

    Article  Google Scholar 

  56. Koshkin N, Shirkevich M (1968) Handbook of elementary physics. Mir publishers, Moscow, pp 51–74

    Google Scholar 

  57. Thermal and structural properties of pure copper, page 1–4. http://aei.ucsd.edu/LIB/PROPS/PANOS/cu.html, Last accessed Dec 2015

Download references

Acknowledgments

The authors wish to thank the BRNS, Mumbai, INDIA, for financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Balasubramaniam.

Appendix A: Derivation of the Empirical Relationship between measured TOF vs E and G

Appendix A: Derivation of the Empirical Relationship between measured TOF vs E and G

Two methods of deriving the relationship has been described below. The gage length of the waveguide, which is the bent region as shown in Fig. 12 was considered in 2 different temperatures i.e. ambient room temperature and instantaneous temperature during measurement.

Fig. 12
figure 12

The waveguide configuration with the bend region

The derivation approach assumes following:

  1. 1.

    The diameter of the waveguide is significantly small when compared to the length of the waveguide and in the wave mode is in the long wavelength regime (low frequency). Hence, the bar velocity formulation can be applied for the fundamental L(0,1) and T(0, 1) modes.

  2. 2.

    The bend region length is relatively small when compared to the remaining straight portion of the waveguide i.e. The time of flight (TOF)v>> (TOF)h condition is considered at vertical (v) and horizontal (h) portion of the waveguide.

  3. 3.

    The wave mode traveling is relatively non dispersive and any dispersion effect may be neglected.

  4. 4.

    The waveguide material is isotropic and homogeneous.

Method 1: Using the Velocity Ratio of the Waveguide at Different Temperature

During the transition from ambient temperature (T 0) to the instantaneous temperature (T i), the following relationships are applicable due to the change in temperature ΔT:

$$ Change\ in\ length\ of\ rod\ \left(\delta l\right) = {l}_0\times \alpha \times \varDelta T $$
(A1)
$$ Thermal\ Strain\kern0.5em \left({\varepsilon}_t\right) = \alpha \times \varDelta T=\frac{\updelta \mathrm{l}}{{\mathrm{l}}_0} $$
(A2)

hence, Coefficient of linear thermal expansion

$$ \left(\upalpha \right)\kern0.75em =\kern0.5em \frac{\updelta \mathrm{l}}{{\mathrm{l}}_0\times \varDelta T} $$
(A3)

Coefficient of volumetric thermal expansion of the rod

$$ \left(\beta \right)=3\alpha $$
(A4)

The density (ρi) of solids is always function of temperature (i) by a change in their linear dimensions and volume [56]

$$ {\uprho}_{\mathrm{i}} = \frac{\uprho_0}{1+\left(\upbeta \times \varDelta T\right)}\kern0.5em =\kern0.5em \frac{\uprho_0}{1+\left(3\upalpha \times \varDelta T\right)} = \kern0.5em \frac{\uprho_0}{1+\left(3\frac{\updelta \mathrm{l}}{{\mathrm{l}}_0}\right)} $$
(A5)

Assuming low frequency regime for the wave propagation of the L(0, 1) mode, the following relationships were used:

Ambient Longitudinal Velocity at ambient temperature

$$ \left({\mathrm{V}}_0\right) = \sqrt{\frac{{\mathrm{E}}_0}{\uprho_0}} $$
(A6)

Instantaneous Longitudinal Velocity at T1

$$ \left({\mathrm{V}}_{\mathrm{i}}\right) = \sqrt{\frac{{\mathrm{E}}_{\mathrm{i}}}{\uprho_{\mathrm{i}}}} $$
(A7)

This leads to the expression below for the velocity ratio between the ambient velocity and the instantaneous velocity:

$$ \sqrt{\frac{\left(\frac{{\mathrm{E}}_0}{\uprho_0}\right)}{\frac{E_i}{\left(\frac{\uprho_0}{1+\left(3\ \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)}\right)}}}=\frac{{\mathrm{V}}_{0\ }}{{\mathrm{V}}_{\mathrm{i}}} from\ Eqns.\ \left(A5,\ A6\ and\ A7\right) $$
(A8)

However, the following relationship for the velocity ratio can be written as:

$$ \frac{{\mathrm{V}}_0}{{\mathrm{V}}_{\mathrm{i}}} = \frac{\left(\frac{{\mathrm{l}}_0}{{\mathrm{TOF}}_0}\right)}{\left(\frac{{\mathrm{l}}_{\mathrm{i}}}{{\mathrm{TOF}}_{\mathrm{i}}}\right)}=\frac{\left(\frac{{\mathrm{l}}_0}{{\mathrm{TOF}}_0}\right)}{\left(\frac{{\mathrm{l}}_0+{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{TOF}}_{\mathrm{i}}}\right)} $$
(A9)

Where

Instantaneous change in length (li) due to temperature change = l0 + δli

Corresponding Instantaneous change in time (TOFi) = TOF0 + δTOFi

From Eqn. (A8, A9), after simplification and using Taylor’s series expansion (up to 2nd order only)

$$ \left(\frac{{\mathrm{E}}_0}{{\mathrm{E}}_{\mathrm{i}}}\times \frac{1}{1+\left(3\ \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)}\right)=\kern0.5em {\left(\frac{\frac{{\mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}}{\frac{{\mathrm{l}}_0+\updelta \mathrm{l}}{{\mathrm{l}}_0}}\right)}^2={\left(\frac{1+\kern0.5em \frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}}{1+\kern0.75em \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}}\right)}^2 $$
(A10)
$$ \frac{{\mathrm{E}}_0}{{\mathrm{E}}_{\mathrm{i}}}=\frac{\left(1 + \left(3\frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)\right)}{{\left(1 + \kern0.5em \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)}^2}\times {\left(1+\kern0.5em \frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}\right)}^2=\mathrm{K}\times \left(1 + 2\ \frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}+\kern0.5em {\left(\frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}\right)}^2\right) $$
(A11)

METHOD 2: Change in Time of Flight Ratio

$$ \begin{array}{l}\frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}=\left(\frac{\left(\frac{{\mathrm{l}}_0+{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{V}}_{\mathrm{i}}}\right)-\frac{{\mathrm{l}}_0}{{\mathrm{V}}_0}}{\frac{{\mathrm{l}}_0}{{\mathrm{V}}_0}}\right)\\ {}\frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}=\left(1 + \kern0.5em \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)\frac{{\mathrm{V}}_0}{{\mathrm{V}}_{\mathrm{i}}}-1\end{array} $$
(A12)

\( \frac{{\mathrm{V}}_0}{{\mathrm{V}}_{\mathrm{i}}} \) from earlier case of derivation

$$ \left(1 + \frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}\right)=\left(1 + \kern0.5em \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)\times \sqrt{\frac{{\mathrm{E}}_0}{{\mathrm{E}}_{\mathrm{i}}}\times \frac{1}{\left(1+\left(3\frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)\right)}} $$
(A13)
$$ \frac{{\mathrm{E}}_0}{{\mathrm{E}}_{\mathrm{i}}}=\frac{\left(1 + \left(3\frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)\right)}{{\left(1 + \kern0.5em \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)}^2} \times {\left(1 + \frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}\right)}^2=\left(\mathbf{K}\right)\times \left(1 + 2\ \frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}+\kern0.5em {\left(\frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}\right)}^2\right) $$
(A14)

This is identical to the Eqn. A11.

In order to simplify the relationship and derive an empirical expression the following approximations are implemented K ≈ 1 and \( {\left(\frac{{\updelta \mathrm{TOF}}_{\mathrm{i}}}{{\mathrm{TOF}}_0}\right)}^2\approx 0 \) using the assumption that the gage length δl is small when compared to length of the waveguide l0

The approximation K ≈ 1 is further verified for four materials Inconel, Nickel, Kanthal and Copper at different temperatures as shown in Table 5. It is believed that this approximation will be applicable to most metals.

Table 5 Calculation of the constant K for different materials

Similarly, if l>>δl , the TOF ratio is relatively small and hence the 2nd order term can be neglected. Using these approximations, the expression in Eq. 13 can be simplified as below:

$$ {\mathbf{E}}_{\mathbf{i}}=\left(\frac{{\mathbf{E}}_0}{1+\kern0.5em 2\ \left(\frac{\boldsymbol{\updelta} \mathbf{T}\mathbf{O}{\mathbf{F}}_{\mathbf{i}}}{\mathbf{TO}{\mathbf{F}}_0}\right)}\right) $$
(A15)

From experimental results, it was also confirmed that the expression may be more generalized a as below, where the constant A for L (0,1) mode used here was found to be 2.5.

$$ {\mathbf{E}}_{\mathbf{i}}=\left(\frac{{\mathbf{E}}_0}{1+\kern0.5em \mathbf{A}\ {\left(\frac{\boldsymbol{\updelta} \mathbf{T}\mathbf{O}{\mathbf{F}}_{\mathbf{i}}}{\mathbf{TO}{\mathbf{F}}_0}\right)}_{\mathbf{L}}}\right) $$
(A16)

Similar approach is used for shear modulus (Gi) measurement of waveguide at different temperature

$$ {\mathbf{G}}_{\mathbf{i}}=\left(\frac{{\mathbf{G}}_0}{1+\kern0.5em \mathbf{B}{\left(\frac{\boldsymbol{\updelta} \mathbf{T}\mathbf{O}{\mathbf{F}}_{\mathbf{i}}}{\mathbf{T}\mathbf{O}{\mathbf{F}}_0}\right)}_{\mathbf{T}}}\right) $$
(A17)

The empirical constants B was found to be 2.25 from experiments.

$$ \mathrm{K} = \frac{\left(1 + \left(3\frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)\right)}{{\left(1 + \kern0.5em \frac{{\updelta \mathrm{l}}_{\mathrm{i}}}{{\mathrm{l}}_0}\right)}^2}\kern0.36em \mathrm{from}\ \mathrm{Eqns}.\ \left(\mathrm{A}11,\ \mathrm{A}14\right) $$
(A18)

The K ≈ 1 values are verified from different materials (α from ref [42, 48, 49, 57]) at different temperatures using Eqn. (A1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periyannan, S., Balasubramaniam, K. Moduli Determination at Different Temperatures by an Ultrasonic Waveguide Method. Exp Mech 56, 1257–1270 (2016). https://doi.org/10.1007/s11340-016-0157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0157-y

Keywords

Navigation