Skip to main content
Log in

Digital Volume Correlation: Review of Progress and Challenges

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

3D imaging has become popular for analyzing material microstructures. When time lapse series of 3D pictures are acquired during a single experiment, it is possible to measure displacement fields via digital volume correlation (DVC), thereby leading to 4D results. Such 4D analyses have been performed for almost two decades. The present paper aims at reviewing the achievements of and challenges faced by such measurement technique. Ex-situ and in-situ experiments are discussed. A general and unified DVC framework is introduced. Various sources of measurement bias and uncertainties are analyzed. The current challenges are studied and some propositions are given to address them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Adam J, Klinkmueller M, Schreurs G, Wieneke B (2013) Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation integration of X-ray computed tomography and digital volume correlation techniques. J Struct Geology 55:127–149

    Google Scholar 

  2. Adrian RJ (2005) Twenty years of particle image velocimetry. Exper Fluid 39:159–169

    Google Scholar 

  3. Andò E, Hall S, Viggiani G, Desrues J, Bésuelle P (2012) Experimental micromechanics: grain-scale observation of sand deformation. Géotechnique Lett 2(3):107–112

    Google Scholar 

  4. Antoulas AC, Sorensen DC, Gugercin S (2001) A survey of model reduction methods for large-scale systems. Contemp Math 280:193–220

    MathSciNet  MATH  Google Scholar 

  5. Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402

    Google Scholar 

  6. Banhart J, Borbély A, Dzieciol K, Garcia-Moreno F, Manke I, Kardjilov N, Kaysser-Pyzalla AR, Strobl M, Treimer W (2010) X-ray and neutron imaging–complementary techniques for materials science and engineering: Dedicated to Professor Dr. H.-P. Degischer on the occasion of his 65th birthday. Int J Mater Res 101(9):1069–1079

    Google Scholar 

  7. Bar-Kochba E, Toyjanova J, Andrews E, Kim K-S, Franck C (2015) A fast iterative digital volume correlation algorithm for large deformations. Exp Mech 55(1):261–274

    Google Scholar 

  8. Baruchel J, Buffière JY, Maire E, Merle P, Peix G (eds) (2000) X-ray tomography in material sciences. Hermès Science, Paris (France)

    Google Scholar 

  9. Batenburg KJ, Sijbers J (2007) DART: A fast heuristic algebraic reconstruction algorithm for discrete tomography. In: IEEE International conference on image processing (ICIP 2007), vol 4, pp IV–133

  10. Batenburg KJ, Sijbers J (2011) DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans Image Process 20(9):2542–2553

    MathSciNet  MATH  Google Scholar 

  11. Bay B (2008) Methods and applications of digital volume correlation. J Strain Anal Eng Des 43(8):745–760

    Google Scholar 

  12. Bay B, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226

    Google Scholar 

  13. Beaurepaire E, Boccara AC, Lebec M, Blanchot L, Saint-Jalmes H (1998) Full-field optical coherence microscopy. Opt Lett 23(4):244–246

    Google Scholar 

  14. Benoit A, Guérard S, Gillet B, Guillot G, Hild F, Mitton D, Périé J-N, Roux S (2009) 3D analysis from micro-MRI during in situ compression on cancellous bone. J Biomechanics 42(14):2381–2386

    Google Scholar 

  15. Berek H, Ballaschk U, Aneziris CG, Losch K, Schladitz K (2015) The correlation of local deformation and stress-assisted local phase transformations in MMC foams. Mater Charact 107:139–148

    Google Scholar 

  16. Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46:789–803

    Google Scholar 

  17. Bormann T, Schulz G, Deyhle H, Beckmann F, de Wild M, Kueffer J, Muench C, Hoffmann W, Mueller B (2014) Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds. Acta Biomater 10(2):1024–1034

    Google Scholar 

  18. Bornert M, Chaix J-M, Doumalin P, Dupré J-C, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des matériaux et des structures. Instrumentation, Mesure, Métrologie 4:43–88

    Google Scholar 

  19. Borstnar G, Gillard F, Mavrogordato M, Sinclair I, Spearing SM (2016) Three-dimensional deformation mapping of mode I interlaminar crack extension in particle-toughened interlayers. Acta Mater 103:63–70

    Google Scholar 

  20. Bouterf A, Adrien J, Maire E, Brajer X, Hild F, Roux S (2016) Failure mechanisms of plasterboard in nail pull test determined by X-ray microtomography and digital Volume correlation. Exp Mech 56(8):1427–1437

    Google Scholar 

  21. Bouterf A, Adrien J, Maire E, Brajer X, Hild F, Roux S (2017) Identification of the crushing behavior of brittle foam from indentation to oedometric tests. J Mech Phys Solids 98:181–200

    Google Scholar 

  22. Bouterf A, Maire E, Roux S, Hild F, Brajer X, Gouillart E, Boller E (2018) Analysis of compaction in brittle foam with multiscale indentation tests. Mech Mat 118:22–30

  23. Bouterf A, Roux S, Hild F, Adrien J, Maire E, Meille S (2014) Digital volume correlation applied to X-ray tomography images from spherical indentation tests on lightweight gypsum. Strain 50(5):444–453

    Google Scholar 

  24. Bowler AI, Drinkwater BW, Wilcox PD (2011) An investigation into the feasibility of internal strain measurement in solids by correlation of ultrasonic images. Proc the Royal Soc A-Math Phys Eng Sci 467 (2132):2247–2270

    Google Scholar 

  25. Brault R, Germaneau A, Dupré J-C, Doumalin P, Mistou S, Fazzini M (2013) In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation. Exp Mech 53(7):1143–1151

    Google Scholar 

  26. Buffière J-Y, Maire E, Adrien J, Masse J-P, Boller E (2010) In situ experiments with X-ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305

    Google Scholar 

  27. Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R (1999) Characterisation of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater 47(5):1613–1625

    Google Scholar 

  28. Buljac A (2017) Understanding, observation and quantification of ductile failure mechanisms via 3D imaging. PhD thesis, Université Paris-Saclay

  29. Buljac A, Shakoor M, Neggers J, Bernacki M, Bouchard P-O, Helfen L, Morgeneyer TF, Hild F (2017) Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging. Comput Mech 59(3):419–441

    MATH  Google Scholar 

  30. Buljac A, Taillandier-Thomas T, Morgeneyer TF, Helfen L, Roux S, Hild F (2016) Slant strained band development during flat to slant crack transition in AA 2198 t8 sheet: in situ 3D measurements. Int J Fract 200(1-2):49–62

    Google Scholar 

  31. Buljac A, Trejo Navas V-M, Shakoor M, Bouterf A, Neggers J, Bernacki M, Bouchard P-O, Morgeneyer TF, Hild F (2017) On the Feasibility of Calibration of Elastoplastic Parameters at the Microscale via X-Ray Microtomography and Digital Volume Correlation for the Simulation of Ductile Damage. Submitted for publication

  32. Cai B, Karagadde S, Yuan L, Marrow TJ, Connolley T, Lee PD (2014) In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al-Cu alloy. Acta Mater 76:371–380

    Google Scholar 

  33. Cai B, Lee PD, Karagadde S, Marrow TJ, Connolley T (2016) Time-resolved synchrotron tomographic quantification of deformation during indentation of an equiaxed semi-solid granular alloy. Acta Mater 105:338–346

    Google Scholar 

  34. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    MathSciNet  MATH  Google Scholar 

  35. Champeney DC (1987) A handbook of Fourier theorems. Cambridge University Press, Cambridge (UK)

    MATH  Google Scholar 

  36. Chen Y, Dall’Ara E, Sales E, Manda K, Wallace R, Pankaj P, Viceconti M (2017) Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J Mech Behav Biomed Mater 65:644–651

    Google Scholar 

  37. Chiang F-P, Mao L (2015) Development of interior strain measurement techniques using random speckle patterns. Meccanica 50(2):401–410

    Google Scholar 

  38. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Meth Eng 17(4):327–350

    MathSciNet  MATH  Google Scholar 

  39. Choudhari C, Herblum R, Akens MK, Moore S, Hardisty M, Whyne CM (2016) Post-euthanasia micro-computed tomography-based strain analysis is able to represent quasi-static in vivo behavior of whole vertebrae. Proc Inst Mech Eng H J Eng Med 230(9):900–904

    Google Scholar 

  40. Colliat-Dangus JL, Desrues J, Foray P (1988) Triaxial testing of granular soil under elevated cell pressure. In: Donaghe RT, Chaney RC, Silver ML (eds) Advanced Triaxial Testing of Soil and Rock, volume STP 977. American Society for Testing and Materials, Philadelphia, pp 290–310

  41. Cooley JW, Tuckey JW (1965) An algorithm for the machine calculation of complex fourier series. Math Comput 19(90):297–301

    MathSciNet  MATH  Google Scholar 

  42. Coudrillier B, Campbell IC, Read AT, Geraldes DM, Vo NT, Feola A, Mulvihill J, Albon J, Abel RL, Ethier CR (2016) Effects of peripapillary scleral stiffening on the deformation of the lamina cribrosa. Invest Ophthalmol Vis Sci 57(6):2666–2677

    Google Scholar 

  43. Coudrillier B, Geraldes DM, Vo NT, Atwood R, Reinhard C, Campbell IC, Raji Y, Albon J, Abel RL, Ethier CR (2016) Phase-contrast micro-computed tomography measurements of the intraocular pressure-induced deformation of the porcine lamina cribrosa. IEEE Trans Med Imaging 35(4):988–999

    Google Scholar 

  44. Dahdah N, Limodin N, El Bartali A, Witz J-F, Seghir R, Charkaluk E, Buffière J-Y (2016) Damage investigation in A319 aluminium alloy by X-ray tomography and digital Volume correlation during in situ high-temperature fatigue tests. Strain 52(4):324–335

    Google Scholar 

  45. Dall’Ara E, Barber D, Viceconti M (2014) About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: a 3D zero-strain study. J Biomechanics 47(12):2956–2963

    Google Scholar 

  46. Danesi V, Tozzi G, Cristofolini L (2016) Application of digital volume correlation to study the efficacy of prophylactic vertebral augmentation. Clin Biomech 39:14–24

    Google Scholar 

  47. Davis GR, Elliot JC (2006) Artefacts in x-ray microtomography of materials. Mater Sci Eng 22(9):1011–1018

    Google Scholar 

  48. Desrues J, Andò E (2015) Strain localisation in granular media. C R Phys 16(1):26–36

    Google Scholar 

  49. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529–546

    Google Scholar 

  50. Desrues J, Viggiani G, Bésuelle P (eds) (2006) Advances in x-ray tomography for geomaterials. Wiley / ISTE, London

    Google Scholar 

  51. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    MathSciNet  MATH  Google Scholar 

  52. Donoho DL, Maleki A, Montanari A (2011) The noise-sensitivity phase transition in compressed sensing. IEEE Trans Inf Theory 57(10):6920–6941

    MathSciNet  MATH  Google Scholar 

  53. Dubois A, Vabre L (2003) Ultrahigh-resolution OCT using white-light interference microscopy. In: Optical methods and optical coherence tomography in biomedicine VII, vol 4956. International Society for Optics and Photonics, pp 14–22

  54. Eastwood DS, Yufit V, Gelb J, Gu A, Bradley RS, Harris SJ, Brett DJL, Brandon NP, Lee PD, Withers PJ, Shearing PR (2014) Lithiation-induced dilation mapping in a lithium-ion battery electrode by 3D x-ray microscopy and digital volume correlation. Adv Energy Mater 4(4):1300506

    Google Scholar 

  55. Elliott JA, Windle AH, Hobdell JR, Eeckhaut G, Oldman RJ, Ludwig W, Boller E, Cloetens P, Baruchel J (2002) In-situ deformation of an open-cell flexible polyurethane foam characterised by 3d computed microtomography. J Mater Sci 37(8):1547–1555

    Google Scholar 

  56. Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947

    Google Scholar 

  57. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  58. Fedele R, Ciani A, Fiori F (2014) X-ray microtomography under loading and 3D-volume digital image correlation. A review. Fundamenta Informaticae 135(1-2):171–197

    MathSciNet  MATH  Google Scholar 

  59. Fedele R, Ciani A, Galantucci L, Bettuzzi M, Andena L (2013) A regularized, pyramidal multi-grid approach to global 3D-volume digital image correlation based on X-ray micro-tomography. Fundamenta Informaticae 125(3-4):361–376

    MathSciNet  Google Scholar 

  60. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A1:612–619

    Google Scholar 

  61. Feng X, Hall MS, Wu M, Hui C-Y (2014) An adaptive algorithm for tracking 3D bead displacements: application in biological experiments. Measurement Sci Technol 25(5):055701

    Google Scholar 

  62. Figueroa Pilz F, Dowey PJ, Fauchille A-L, Courtois L, Bay B, Ma L, Taylor KG, Mecklenburgh J, Lee PD (2017) Synchrotron tomographic quantification of strain and fracture during simulated thermal maturation of an organic-rich shale, UK Kimmeridge Clay. J Geophys Res Solid Earth 122(4):2553–2564

    Google Scholar 

  63. Fila T, Jirousek O, Jung A, Kumpova I (2016) Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading. Journal of Instrumentation, 11:C11017 NOV

  64. Finegan DP, Tudisco E, Scheel M, Robinson JB, Taiwo OO, Eastwood S, Lee PD, Di Michiel M, Bay B, Hall S, Hinds G, Brett DJL, Shearing PR (2016) Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High-Speed Operando Tomography and Digital Volume Correlation. Advan Sci 3(3):1500332

    Google Scholar 

  65. Fischer G, Nellesen J, Anar NB, Ehrig K, Riesemeier H, Tillmann W (2013) 3D analysis of micro-deformation in VHCF-loaded nodular cast iron by µCT. Mater Sci Eng A-Struct Mater Properties Microstructure Process 577:202–209

    Google Scholar 

  66. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R et al (2006) First performance evaluation of a dual-source ct (dsct) system. Eur Radiol 16(2):256–268

    Google Scholar 

  67. Forsberg F, Mooser R, Arnold M, Hack E, Wyss P (2008) 3D micro-scale deformations of wood in bending Synchrotron radiation µCT data analyzed with digital volume correlation. J Struct Biol 164(3):255–262

    Google Scholar 

  68. Forsberg F, Siviour CR (2009) 3D deformation and strain analysis in compacted sugar using x-ray microtomography and digital volume correlation. Measurement Sci Technol 20(9):095703

    Google Scholar 

  69. Forsberg F, Sjodahl M, Mooser R, Hack E, Wyss P (2010) Full Three-dimensional strain measurements on wood exposed to three-point bending analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46(1):47–60

    Google Scholar 

  70. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47(3):427–438

    Google Scholar 

  71. Fu J, Haghighi-Abayneh M, Pierron F, Ruiz PD (2016) Depth-resolved full-field measurement of corneal deformation by optical coherence tomography and digital volume correlation. Exp Mech 56(7):1203–1217

    Google Scholar 

  72. Fu J, Pierron F, Ruiz PD (2013) Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation. J Biomed Opt 18(12):121512

    Google Scholar 

  73. Gates M, Gonzalez J, Lambros J, Heath MT (2015) Subset refinement for digital volume correlation numerical and experimental applications. Exp Mech 55(1):245–259

    Google Scholar 

  74. Gates M, Heath MT, Lambros J (2015) High-performance hybrid CPU and GPU parallel algorithm for digital volume correlation. Int J High Perform Comput Appl 29(1):92–106

    Google Scholar 

  75. Genet M, Lee LC, Kozerke S (2017) A continuum finite strain formulation of the equilibrium gap regularizer for finite element image correlation. CSMA http://hal.archives-ouvertes.fr/hal-01661810/

  76. Germaneau A, Doumalin P, Dupré J-C (2007) 3D strain field measurement by correlation of volume images using scattered light recording of images and choice of marks. Strain 43(3):207–218

    Google Scholar 

  77. Germaneau A, Peyruseigt F, Mistou S, Doumalin P, Dupré J-C (2010) 3D mechanical analysis of aeronautical plain bearings validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography. Opt Lasers Eng 48(6):676–683

    Google Scholar 

  78. Gillard F, Boardman R, Mavrogordato M, Hollis D, Sinclair I, Pierron F, Browne M (2014) The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression. J Mech Behav Biomed Mater 29:480–499

    Google Scholar 

  79. Gomes Perini LA, Passieux J-C, Périé J-N (2014) A multigrid PGD-based algorithm for volumetric displacement fields measurements. Strain 50(4):355–367

    Google Scholar 

  80. Gondrom S, Schropfer S (1999) Digital computed laminography and tomosynthesis — functional principles and industrial applications. J Nondestructive Testing Ultrasonics, 7(2)

  81. Gondrom S, Zhou J, Maisl M, Reiter H, Kröning M, Arnold W (1999) X-ray computed laminography: an approach of computed tomography for applications with limited access. Nucl Eng Des 190(1):141–147

    Google Scholar 

  82. Grédiac M, Hild F (eds) (2012) Full-field measurements and identification in solid mechanics. ISTE/Wiley, London

    Google Scholar 

  83. Guillet J-P, Recur B, Frederique L, Bousquet B, Canioni L, Manek-Hönninger I, Desbarats P, Mounaix P (2014) Review of terahertz tomography techniques. J Infrared Millimeter Terahertz Waves 35 (4):382–411

    Google Scholar 

  84. Guvenilir A, Breunig TM, Kinney JH, Stock SR (1997) Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of al-li2090. Acta Mater 45:1977–1987

    Google Scholar 

  85. Hall S, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani C, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using x-ray micro ct and volumetric digital image correlation. Géotechnique 60(5):315–322

    Google Scholar 

  86. Helfen L, Baumbach T, Mikulík P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86(7):071915

    Google Scholar 

  87. Helfen L, Myagotin A, Mikulík P, Pernot P, Voropaev A, Elyyan M, Di Michiel M, Baruchel J, Baumbach T (2011) On the implementation of computed laminography using synchrotron radiation. Rev Sci Instruments 82(063702)

  88. Helfen L, Myagotin A, Rack A, Pernot P, Mikulík P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Status Solidi (A) 204:2760–2765

    Google Scholar 

  89. Helfen L, Xu F, Suhonen H, Urbanelli L, Cloetens P, Baumbach T (2013) Nano-laminography for three-dimensional high-resolution imaging of flat specimens. J Instrum 8(05):C05006

    Google Scholar 

  90. Herman GT (1979) Correction for beam hardening in computed tomography. Phys Med Biol 24(1):81

    Google Scholar 

  91. Herman GT, Davidi R (2008) Image reconstruction from a small number of projections. Inverse Prob 24(045011)

  92. Hild F, Bouterf A, Chamoin L, Mathieu F, Neggers J, Pled F, Tomičević Z, Roux S (2016) Toward 4D mechanical correlation. Advan Model Simul Eng Sci 3(17):1–26

    Google Scholar 

  93. Hild F, Bouterf A, Roux S (2015) Damage measurements via DIC from physical to mechanical damage. Int J Fract 191(1-2):77–105

    Google Scholar 

  94. Hild F, Fanget A, Adrien J, Maire E, Roux S (2011) Three-dimensional analysis of a tensile test on a propellant with digital volume correlation. Archives Mech 63(5-6):459–478

    Google Scholar 

  95. Hild F, Leclerc H, Roux S, Swiergiel N, Tomičević Z (2012) Circumventing the curse of resolution versus spatial resolution in digital image correlation from local to global and regularized approaches. In: IUTAM Symposium on advances of optical methods in experimental mechanics

  96. Hild F, Maire E, Roux S, Witz J-F (2009) Three dimensional analysis of a compression test on stone wool. Acta Mater 57:3310–3320

    Google Scholar 

  97. Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt, IP 41(32):6815–6828

    Google Scholar 

  98. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Google Scholar 

  99. Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical Methods for Solid Mechanics. A Full-Field Approach. Wiley, Weinheim, pp 183–228

  100. Hild F, Roux S, Bernard D, Hauss G, Rebai M (2013) On the use of 3D images and 3D displacement measurements for the analysis of damage mechanisms in concrete-like materials. In: Van Mier JGM, Ruiz G, Andrade C, Yu RC, Zhang XX (eds) FraMCoS-8, pp 1–11

  101. Hill DLG, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46(3):R1

    Google Scholar 

  102. Hu Z, Du Y, Luo H, Zhong B, Lu H (2014) Internal deformation measurement and force chain characterization of mason sand under confined compression using incremental digital volume correlation. Exp Mech 54(9):1575–1586

    Google Scholar 

  103. Hu Z, Luo H, Bardenhagen SG, Siviour CR, Armstrong RW, Lu H (2015) Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of in-situ tomography. Exp Mech 55(1):289–300

    Google Scholar 

  104. Huang J, Pan X, Li S, Peng X, Xiong C, Fang J (2011) A digital volume correlation technique for 3-D deformation measurements of soft gels. Int J Appl Mech 3(2):335–354

    Google Scholar 

  105. Hussein AI, Mason ZD, Morgan EF (2013) Presence of intervertebral discs alters observed stiffness and failure mechanisms in the vertebra. J Biomechanics 46(10):1683–1688

    Google Scholar 

  106. Hussein AI, Morgan EF (2013) The effect of intravertebral heterogeneity in microstructure on vertebral strength and failure patterns. Osteoporos Int 24(3):979–989

    Google Scholar 

  107. Jackman TM, DelMonaco AM, Morgan EF (2016) Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion. J Biomechanics 49(2):267–275

    Google Scholar 

  108. Jackman TM, Hussein AI, Curtiss C, Fein PM, Camp A, De Barros L, Morgan EF (2016) Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion. J Bone Miner Res 31(4):777–788

    Google Scholar 

  109. Jailin C, Bouterf A, Poncelet M, Roux S (2017) In situ µCT mechanical tests: fast 4D mechanical identification. Exp Mech 57(8):1327–1340

    Google Scholar 

  110. Jailin C, Buljac A, Bouterf A, Poncelet M, Hild F, Roux S (2018) Self-calibration for lab-µCT using space-time regularized projection-based DVC and model reduction. Meas Sci Tech 29:024003

  111. Joffre T, Girlanda O, Forsberg F, Sahlen F, Sjodahl M, Gamstedt EK (2015) A 3D in-situ investigation of the deformation in compressive loading in the thickness direction of cellulose fiber mats. Cellulose 22(5):2993–3001

    Google Scholar 

  112. Johnson TRC, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser MF, Becker CR (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16 (7):1409–1415

    Google Scholar 

  113. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New York

    MATH  Google Scholar 

  114. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) ELASTIX: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205

    Google Scholar 

  115. Kobayashi M, Toda H, Kawai Y, Ohgaki T, Uesugi K, Wilkinson DS, Kobayashi T, Aoki Y, Nakazawa M (2008) High-density three-dimensional mapping of internal strain by tracking microstructural features. Acta Mater 56(10):2167–2181

    Google Scholar 

  116. Krupa K, Bekiesińska-Figatowska M (2015) Artifacts in magnetic resonance imaging. Pol J Radiol 80:93

    Google Scholar 

  117. Kullback S (1959) Information theory and statistics. Wiley, New-York

    MATH  Google Scholar 

  118. Lachambre J, Réthoré J, Weck A, Buffière J-Y (2015) Extraction of stress intensity factors for 3D small fatigue cracks using digital volume correlation and x-ray tomography. Int J Fatigue 71:3–10

    Google Scholar 

  119. Ladevèze P (2014) PGD In linear and nonlinear computational solid mechanics. In: Separated representations and PGD-based model reduction. Springer, pp 91–152

  120. Leclerc H, Neggers J, Mathieu F, Hild F, Roux S (2015) Correli 3.0. Agence pour la Protection des Programmes, IDDN.FR.001.520008.000. S. P.2015.000.31500

  121. Leclerc H, Périé J-N, Hild F, Roux S (2012) Digital volume correlation: what are the limits to the spatial resolution?. Mech Industry 13(6):361–371

    Google Scholar 

  122. Leclerc H, Périé J-N, Roux S, Hild F (2011) Voxel-scale digital volume correlation. Exp Mech 51(4):479–490

    Google Scholar 

  123. Leclerc H, Roux S, Hild F (2015) Projection savings in CT-based digital volume correlation. Exp Mech 55(1):275–287

    Google Scholar 

  124. Lecomte-Grosbras P, Réthoré J, Limodin N, Witz J-F, Brieu M (2015) Three-dimensional investigation of free-edge effects in laminate composites using x-ray tomography and digital volume correlation. Exp Mech 55(1):301–311

    Google Scholar 

  125. Lemaitre J (1992) A course on damage mechanics. Springer, Berlin

    MATH  Google Scholar 

  126. Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to x-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43:193–205

    Google Scholar 

  127. Leplay P, Réthoré J, Meille S, Baietto M-C, Adrien J, Chevalier J, Maire E (2013) Three-dimensional analysis of an in situ double-torsion test by x-ray computed tomography and digital volume correlation. Exp Mech 53(7):1265–1275

    Google Scholar 

  128. Lesman A, Notbohm J, Tirrel DA, Ravichandran G (2014) Contractile forces regulate cell division in three-dimensional environments. J Cell Biol 205(2):155–162

    Google Scholar 

  129. Lim KY, Henderson JT, Neu CP (2013) Cell and tissue deformation measurements: texture correlation with third-order approximation of displacement gradients. J Biomechanics 46(14):2490–2496

    Google Scholar 

  130. Limodin N, Réthoré J, Adrien J, Buffière J-Y, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory x-ray Source. Exp Mech 51(6):959–970

    Google Scholar 

  131. Limodin N, Réthoré J, Buffière J-Y, Hild F, Roux S, Ludwig W, Rannou J, Gravouil A (2010) Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D Volume correlation. Acta Mater 58(8):2957–2967

    Google Scholar 

  132. Limodin N, Réthoré J, Buffière JY, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Mater 57(14):4090–4101

    Google Scholar 

  133. Liu L, Morgan EF (2007) Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J Biomechanics 40(15):3516–3520

    Google Scholar 

  134. Ludwig W, Buffière J-Y, Savelli S, Cloetens P (2003) Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography. Acta Mater 51(3):585–598

    Google Scholar 

  135. Ludwik P (1909) Elemente der technologischen Mechanik. Verlag Von Julius Springer Leipzig (Germany)

  136. Madi K, Tozzi G, Zhang QH, Tong J, Cossey A, Au A, Hollis D, Hild F (2013) Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med Eng Phys 35(9):1298–1312

    Google Scholar 

  137. Mae BA (2003) The revolution in medical imaging. Rosen Pub. Group, New York

    Google Scholar 

  138. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198

    Google Scholar 

  139. Mahalanobis PC (1936) On the generalised distance in statistics. In: Proceedings of the National Institute of Sciences of India, pp 49–55

  140. Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36

    Google Scholar 

  141. Maire E, Buffière J-Y, Salvo L, Blandin JJ, Ludwig W, Létang J-M (2001) On the application of x-ray microtomography in the field of materials science. Adv Eng Mater 3(8):539–546

    Google Scholar 

  142. Maire E, Le Bourlot C, Adrien J, Mortensen A, Mokso R (2016) 20-Hz x-ray tomography during an in situ tensile test. Int J Fract 200(1):3–12

    Google Scholar 

  143. Maire E, Withers PJ (2014) Quantitative x-ray tomography. Int Mater Rev 59(1):1–43

    Google Scholar 

  144. Makitalo M, Foi A (2013) Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise. IEEE Trans Image Process 22(1):91–103

    MathSciNet  MATH  Google Scholar 

  145. Malfroy Camine V, Rudiger HA, Pioletti DP, Terrier A (2016) Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers. J Biomechanics 49(16):4002–4008

    Google Scholar 

  146. Marrow TJ, Mostafavi M, Hashimoto T, Thompson GE (2014) A quantitative three-dimensional in situ study of a short fatigue crack in a magnesium alloy. Int J Fatigue 66:183–193

    Google Scholar 

  147. Maskarinec SA, Franck C, Tirrell DA, Ravichandran G (2009) Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci USA 106(52):22108–22113

    Google Scholar 

  148. Mathieu F, Hild F, Roux S (2012) Identification of a crack propagation law by digital image correlation. Int J Fatigue 36:146–154

    Google Scholar 

  149. Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105–119

    Google Scholar 

  150. McDonald S, Withers PJ (2014) Combining x-ray microtomography and three-dimensional digital volume correlation to track microstructure evolution during sintering of copper powder. J Strain Anal Eng Des 49(4):257–269

    Google Scholar 

  151. Mendoza A, Roux S, Schneider J, Parra E (2017) Extraction of topological differences in woven composite materials. In: 7Th conference on industrial computed tomography

  152. Mendoza A, Roux S, Schneider J, Parra E, Obert E (2017) Unwrapping textile fabric. In: 3Rd international conference on tomography of materials and structures

  153. Moore EH (1920) On the reciprocal of the general algebraic matrix. Bull Am Math Soc 2(26):394–395

    Google Scholar 

  154. Morandi P, Brémand E, Doumalin P, Germaneau A, Dupré J-C (2014) New optical scanning tomography using a rotating slicing for time-resolved measurements of 3D full field displacements in structures. Opt Lasers Eng 58:85–92

    Google Scholar 

  155. Morgeneyer TF, Helfen L, Mubarak H, Hild F (2013) 3D digital Volume Correlation of synchrotron radiation laminography images of ductile crack initiation an initial feasibility study. Exp Mech 53(4):543–556

    Google Scholar 

  156. Morgeneyer TF, Taillandier-Thomas T, Buljac A, Helfen L, Hild F (2016) On strain and damage interactions during tearing: 3D in situ measurements and simulations for a ductile alloy (AA2139-T3). J Mech Phys Solids 96:550–571

    Google Scholar 

  157. Morgeneyer TF, Taillandier-Thomas T, Helfen L, Baumbach T, Sinclair I, Roux S, Hild F (2014) In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet. Acta Mater 69:78–91

    Google Scholar 

  158. Mortazavi F, Ghossein E, Levesque M, Villemure I (2014) High resolution measurement of internal full-field displacements and strains using global spectral digital volume correlation. Opt Lasers Eng 55:44–52

    Google Scholar 

  159. Mostafavi M, Baimpas N, Tarleton E, Atwood R, McDonald S, Korsunsky AM, Marrow TJ (2013) Three-dimensional crack observation, quantification and simulation in a quasi-brittle material. Acta Mater 61(16):6276–6289

    Google Scholar 

  160. Mostafavi M, Bradley R, Armstrong DEJ, Marrow TJ (2016) Quantifying yield behaviour in metals by x-ray nanotomography. Sci Report 6:34346

    Google Scholar 

  161. Mostafavi M, Collins DM, Cai B, Bradley R, Atwood R, Reinhard C, Jiang X, Galano M, Lee PD, Marrow TJ (2015) Yield behavior beneath hardness indentations in ductile metals, measured by three-dimensional computed x-ray tomography and digital volume correlation. Acta Mater 82:468–482

    Google Scholar 

  162. Mostafavi M, McDonald S, Cetinel H, Mummery PM, Marrow TJ (2013) Flexural strength and defect behaviour of polygranular graphite under different states of stress. Carbon 59:325–336

    Google Scholar 

  163. Nahas A, Bauer M, Roux S, Boccara AC (2013) 3D static elastography at the micrometer scale using full field OCT. Biomed Opt Express 4(10):2138–2149

    Google Scholar 

  164. Neggers J, Allix O, Hild F, Roux S (2018) Big data in experimental mechanics and model order reduction: today’s challenges and tomorrow’s opportunities. Arch Comput Meth Eng 25(1):143–164

    MathSciNet  MATH  Google Scholar 

  165. Nguyen TT, Yvonnet J, Bornert M, Chateau C (2016) Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: direct comparison between in situ testing-microCT experiments and phase field simulations. J Mech Phys Solids 95:320–350

    Google Scholar 

  166. Novelline RA (2018) Squire’s fundamentals of radiology. Harvard University Press, Cambridge

    Google Scholar 

  167. Palanca M, Cristofolini L, Dall’Ara E, Curto M, Innocente F, Danesi V, Tozzi G (2016) Digital volume correlation can be used to estimate local strains in natural and augmented vertebrae: an organ-level study. J Biomechanics 49(16):3882–3890

    Google Scholar 

  168. Palanca M, Tozzi G, Cristofolini L, Viceconti M, Dall’Ara E (2015) Three-dimensional local measurements of bone strain and displacement: comparison of three digital volume correlation approaches. J Biomechanical Eng-Trans ASME 137(7):071006

    Google Scholar 

  169. Pan B, Wang B, Wu D, Lubineau G (2014) An efficient and accurate 3D displacements tracking strategy for digital volume correlation. Opt Lasers Eng 58:126–135

    Google Scholar 

  170. Pan B, Wu D, Wang Z (2012) Internal displacement and strain measurement using digital volume correlation: a least-squares framework. Measure Sci Technol, 23(4)

  171. Parker KJ, Doyley MM, Rubens DJ (2011) Corrigendum 1: imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 56(2):513

    Google Scholar 

  172. Parker KJ, Doyley MM, Rubens DJ (2011) Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 56(1):R1

    Google Scholar 

  173. Parker KJ, Doyley MM, Rubens DJ (2012) Corrigendum 2: imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 57(16):5359

    Google Scholar 

  174. Passieux J-C, Périé J-N (2012) High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int J Numer Methods Eng 92(6):531–550

    MathSciNet  MATH  Google Scholar 

  175. Passieux J-C, Périé J-N, Salaün M (2015) A dual domain decomposition method for finite element digital image correlation. Int J Numer Methods Eng 102(10):1670–1682

    MathSciNet  MATH  Google Scholar 

  176. Patterson BM, Cordes NL, Henderson K, Mertens JCE, Clarke AJ, Hornberger B, Merkle A, Etchin S, Tkachuk A, Leibowitz M, Trapp D, Qiu W, Zhang B, Bale H, Lu X, Hartwell R, Withers PJ, Bradley RS (2016) In situ laboratory-based transmission x-ray microscopy and tomography of material deformation at the nanoscale. Exp Mech 56(9):1585–1597

    Google Scholar 

  177. Paz-Garcia JM, Taiwo OO, Tudisco E, Finegan DP, Shearing PR, Brett DJL, Hall S (2016) 4D analysis of the microstructural evolution of Si-based electrodes during lithiation time-lapse x-ray imaging and digital volume correlation. J Power Sources 320:196–203

    Google Scholar 

  178. Penrose R (1956) On best approximate solutions of linear matrix equations. Math Proc Camb Philos Soc 52 (1):17–19

    MATH  Google Scholar 

  179. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68(3):362–368

    Google Scholar 

  180. Pierron F, McDonald S, Hollis D, Fu J, Withers PJ, Alderson A (2013) Comparison of the mechanical behaviour of standard and auxetic foams by x-ray computed tomography and digital volume correlation. Strain 49(6):467–482

    Google Scholar 

  181. Popescu DP, Choo-Smith L-P, Flueraru C, Mao Y, Chang S, Disano J, Sherif S, Sowa MG (2011) Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys Rev 3(3):155–169

    Google Scholar 

  182. Prell D, Kyriakou Y, Kalender WA (2009) Comparison of ring artifact correction methods for flat-detector CT. Phys Med Biol 54(12):3881

    Google Scholar 

  183. Rahmani B, Ghossein E, Villemure I, Levesque M (2014) In-situ mechanical properties identification of 3D particulate composites using the virtual fields method. Int J Solids Struct 51(18):3076–3086

    Google Scholar 

  184. Rannou J, Limodin N, Réthore J, Gravouil A, Ludwig W, Baietto-Dubourg M-C, Buffière J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199(21-22):1307–1325

    MATH  Google Scholar 

  185. Ren M, Liang J, Wei B (2016) Accurate B-spline-based 3-D interpolation scheme for digital volume correlation. Rev Sci Instruments 87(12):125114

    Google Scholar 

  186. Réthoré J, Hild F, Roux S (2007) Shear-band capturing using a multiscale extended digital image correlation technique. Comput Methods Appl Mech Eng 196(49-52):5016–5030

    MATH  Google Scholar 

  187. Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73(2):248–272

    MathSciNet  MATH  Google Scholar 

  188. Réthoré J, Limodin N, Buffière J-Y, Hild F, Ludwig W, Roux S (2011) Digital volume correlation analyses of synchrotron tomographic images. J Strain Anal Eng Des 46(7):683–695

    Google Scholar 

  189. Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis fractured samples. European J Comput Mech 18:285–306

    MATH  Google Scholar 

  190. Réthoré J, Roux S, Hild F (2011) Optimal and noise-robust extraction of fracture mechanics parameters from kinematic measurements. Eng Fracture Mech 78(9):1827–1845

    Google Scholar 

  191. Réthoré J, Tinnes J-P, Roux S, Buffière J-Y, Hild F (2008) Extended three-dimensional digital image correlation (X3D-DIC). Comptes Rendus Mécanique 336:643–649

    MATH  Google Scholar 

  192. Roberts BC, Perilli E, Reynolds KJ (2014) Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J Biomechanics 47(5):923–934

    Google Scholar 

  193. Roeder BA, Kokini K, Robinson JP, Voytik-Harbin SL (2004) Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs. J Biomechanical Eng-Trans ASME 126 (6):699–708

    Google Scholar 

  194. Rohlfing T, Maurer CR, Bluemke DA, Jacobs MA (2003) Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans Med Imaging 22 (6):730–741

    Google Scholar 

  195. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1-4):141–157

    MATH  Google Scholar 

  196. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from x-ray computed tomography of solid foam. Compos Part A Appl Sci Manuf 39(8):1253–1265

    Google Scholar 

  197. Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 42:214004

    Google Scholar 

  198. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721

    Google Scholar 

  199. Salvo L, Cloetens P, Maire E, Zabler S, Blandin J-J, Buffière JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear Instruments and Method Phys Res Section B: Beam Interact Mater and Atoms 200:273–286

    Google Scholar 

  200. Saucedo-Mora L, Mostafavi M, Khoshkhou D, Reinhard C, Atwood R, Zhao S, Connolly B, Marrow TJ (2016) Observation and simulation of indentation damage in a SiC-SiC fibre ceramic matrix composite. Finite Elem Anal Des 110:11–19

    Google Scholar 

  201. Saucedo-Mora L, Zou C, Lowe T, Marrow TJ (2017) Three-dimensional measurement and cohesive element modelling of deformation and damage in a 2.5-dimensional woven ceramic matrix composite. Fatigue Fract Eng Mater Struct 40(5):683–695

    Google Scholar 

  202. Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012001

    Google Scholar 

  203. Schneider J, Leclerc H, Hild F, Roux S (2015) Method for characterising a part. Patent, WO2015092212 A1

  204. Schoenberg IJ (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Part A. Q Appl Math 4:45–99

    Google Scholar 

  205. Shakoor M, Buljac A, Neggers J, Hild F, Morgeneyer TF, Helfen L, Bernacki M, Bouchard P-O (2017) On the choice of boundary conditions for micromechanical simulations based on 3D imaging. Int J Solids Struct 112:83–96

    MATH  Google Scholar 

  206. Smith TS, Bay B, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42(3):272–278

    Google Scholar 

  207. Stock SR (2008) Recent advances in x-ray microtomography applied to materials. Int Mater Rev 53(3):129–181

    Google Scholar 

  208. Studholme C, Hill DLG, Hawkes DJ (1996) Automated 3-D registration of MR and CT images of the head. Med Image Anal 1(2):163–175

    Google Scholar 

  209. Sukjamsri C, Geraldes DM, Gregory T, Ahmed F, Hollis D, Schenk S, Amis A, Emery R, Hansen U (2015) Digital volume correlation and micro-CT: an in-vitro technique for measuring full-field interface micromotion around polyethylene implants. J Biomechanics 48(12):3447–3454

    Google Scholar 

  210. Sur F, Grédiac M (2015) Measuring the noise of digital imaging sensors by stacking raw images affected by vibrations and illumination flickering. SIAM J Imag Sci 8(1):611–643

    MathSciNet  MATH  Google Scholar 

  211. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  212. Taillandier-Thomas T, Roux S, Hild F (2016) Soft route to 4D tomography. Phys Rev Lett 117 (2):025501

    MathSciNet  Google Scholar 

  213. Taillandier-Thomas T, Roux S, Morgeneyer TF, Hild F (2014) Localized strain field measurement on laminography data with mechanical regularization. Nuclear Instruments & Methods Phys Res Section B-Beam Interact Mater Atoms 324:70–79

    Google Scholar 

  214. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  215. Toda H, Maire E, Aoki Y, Kobayashi M (2011) Three-dimensional strain mapping using in situ X-ray synchrotron microtomography. J Strain Anal Eng Des 46(7):549–561

    Google Scholar 

  216. Toda H, Sinclair I, Buffière J-Y, Maire E, Khor KH, Gregson P, Kobayashi T (2004) A 3d measurement procedure for internal local crack driving forces via synchrotron x-ray microtomography. Acta Mater 52:1305–1317

    Google Scholar 

  217. Tomičević Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Anal Eng Des 48:330–343

    Google Scholar 

  218. Tomičević Z, Kodvanj J, Hild F (2016) Characterization of the nonlinear behavior of nodular graphite cast iron via inverse identification-analysis of uniaxial tests. Eur J Mech A Solids 59:140–154

    Google Scholar 

  219. Tozzi G, Danesi V, Palanca M, Cristofolini L (2016) Elastic full-field strain analysis and microdamage progression in the vertebral body from digital volume correlation. Strain 52(5):446–455

    Google Scholar 

  220. Tozzi G, Zhang Q-H, Tong J (2014) Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression. J Biomechanics 47(14):3466–3474

    Google Scholar 

  221. Tran H, Doumalin P, Delisée C, Dupré J-C, Malvestio J, Germaneau A (2013) 3D mechanical analysis of low-density wood-based fiberboards by x-ray microcomputed tomography and digital volume correlation. J Mater Sci 48(8):3198–3212

    Google Scholar 

  222. Truesdell C, Noll W (1965) The non-linear field theories of mechanics, volume III/3. Springer, Berlin

    MATH  Google Scholar 

  223. Tudisco E, Hall S, Charalampidou EM, Kardjilov N, Hilger A, Sone H (2015) Full-field measurements of strain localisation in sandstone by neutron tomography and 3D-volumetric digital image correlation. Phys Procedia 69:509–515

    Google Scholar 

  224. Tudisco E, Jailin C, Mendoza A, Tengattini A, Andò E, Hall S, Viggiani G, Hild F, Roux S (2017) An extension of digital volume correlation for multimodality image registration. Meas Sci Technol 28 (9):095401

    Google Scholar 

  225. Vajda I (1989) Theory of statistical inference and information, vol 11, Kluwer Academic Publishers, Norwell

  226. Van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, Sijbers J (2015) The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157:35–47

    Google Scholar 

  227. van den Elsen PA, Pol EJD, Viergever MA (1993) Medical image matching: a review with classification. IEEE Eng Med Biol Mag 12(1):26–39

    Google Scholar 

  228. Van Gompel G, Van Slambrouck K, Defrise M, Batenburg KJ, de Mey J, Sijbers J, Nuyts J (2011) Iterative correction of beam hardening artifacts in CT. Med Phys 38(S1):S36–S49

    Google Scholar 

  229. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomechanics 37(9):1313–1320

    Google Scholar 

  230. Vertyagina Y, Mostafavi M, Reinhard C, Atwood R, Marrow TJ (2014) In situ quantitative three-dimensional characterisation of sub-indentation cracking in polycrystalline alumina. J Eur Ceram Soc 34 (12):3127–3132

    Google Scholar 

  231. Wan K, Yang P (2015) Expanded digital volume correlation for ex situ applications. Measure Sci Technol 26(9)

  232. Wang B, Pan B, Tao R, Lubineau G (2017) Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner. Meas Sci Technol 28(5):055402

    Google Scholar 

  233. Wang L, Limodin N, El Bartali A, Witz J-F, Seghir R, Buffière J-Y, Charkaluk E (2016) Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting a319 alloy by using 3D in-situ analysis. Mater Sci Eng A 673:362–372

    Google Scholar 

  234. Wang T, Jiang Z, Kemao Q, Lin F, Soon SH (2016) GPU accelerated digital volume correlation. Exp Mech 56(2):297–309

    Google Scholar 

  235. Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1):35–51

    Google Scholar 

  236. Withers PJ (2007) X-ray nanotomography. Mater Today 10(12):26–34

    Google Scholar 

  237. Xu F, Helfen L, Baumbach T, Suhonen H (2012) Comparison of image quality in computed laminography and tomography. Opt Express 20:794–806

    Google Scholar 

  238. Xu S, Grande-Allen KJ (2010) The evolution of the field of biomechanics through the lens of experimental mechanics. Exp Mech 50(6):667–682

    Google Scholar 

  239. Yang Z, Ren W, Sharma R, McDonald S, Mostafavi M, Vertyagina Y, Marrow TJ (2017) In-situ x-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete. Cem Concr Compos 75:74–83

    Google Scholar 

  240. Yeni YN, Wu B, Huang L, Oravec D (2013) Mechanical loading causes detectable changes in morphometric measures of trabecular structure in human cancellous bone. J Biomechanical Eng-Trans ASME 135 (5):54505

    Google Scholar 

  241. Zauel R, Yeni YN, Bay B, Dong XN, Fyhrie DP (2006) Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J Biomechanical Eng-Trans ASME 128(1):1–6

    Google Scholar 

  242. Zhu M-L, Zhang Q-H, Lupton C, Tong J (2016) Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation. J Mech Behav Biomed Mater 57:269–279

    Google Scholar 

  243. Zhuge X, Palenstijn WJ, Batenburg KJ (2016) TVR-DART: a more robust algorithm for discrete tomography from limited projection data with automated gray value estimation. IEEE Trans Image Process 25 (1):455–468

    MathSciNet  Google Scholar 

  244. Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000

    Google Scholar 

Download references

Acknowledgements

Different parts of the above mentioned examples were funded by Agence Nationale de la Recherche under the grants ANR-10-EQPX-37 (MATMECA), ANR-14-CE07-0034-02 (COMINSIDE), Saint Gobain, SAFRAN Aircraft Engines and SAFRAN Tech. It is a pleasure to acknowledge the support of BPI France within the DICCIT project, and ESRF for MA1006, MI1149, MA1631,MA1932, and ME1366 experiments.

Fruitful discussions with Profs. Olivier allix, Marc Bernacki, Claude Boccara, Pierre-Olivier Bouchard, Jean-Yves Buffière, Stephen Hall, Per-Lennart Larsson, Eric Maire, Cino Viggiani, and Drs. Jérôme Adrien, Edward Andó, Dominique Bernard, Xavier Brajer, René Gy, Lukas Helfen, Thilo Morgeneyer, Amir Nahas, Estelle Parra, Mehdi Rebai, Julien Schneider are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hild.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buljac, A., Jailin, C., Mendoza, A. et al. Digital Volume Correlation: Review of Progress and Challenges. Exp Mech 58, 661–708 (2018). https://doi.org/10.1007/s11340-018-0390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0390-7

Keywords

Navigation