Skip to main content
Log in

Evaluation of Conformal and Non-Conformal Contact Parameters Using Digital Photoelasticity

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Experimental studies to exploit photoelastic data of conformal geometries to extract contact parameters are non-existent because closed-form stress field equations were not available until recently. In this paper, the explicit equations recently reported in the literature for a flat punch with rounded edges are generalized so that a single set of equations can be used for a flat punch with rounded edges and Hertzian contacts with arbitrary radii of curvatures. The generality of the governing equations is verified by plotting isochromatics for conformal and non-conformal contact situations. A generic method to evaluate unknown contact parameters from the whole-field isochromatic data for conformal and non-conformal geometries is implemented. The methodology is initially verified using theoretically generated isochromatic data and is then used to experimentally evaluate two contact situations. In view of high-fringe gradient zones, the suitability of various digital photoelastic methods is compared. A novel four-step phase shifting technique is proposed in which isochromatic and isoclinic data can be evaluated using the minimum number of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Johnson KL (2003) Contact mechanics. Cambridge University Press

  2. Hills DA, Nowell D, Sackfield A (1993) Mechanics of elastic contacts, Butterworth Heinemann Ltd

  3. Muskelishvili NL (1977) Some basic problems of the mathematical theory of elasticity. Fourth ed., Springer-Science Business Media 1977

  4. Sackfield A, Mugadu A, Hills DA (2002) The influence of an edge radius on the local stress field at the edge of a complete fretting contact. Int J Solids Struct 39:4407–4420

    Article  MATH  Google Scholar 

  5. Smith JO, Liu CK (1953) Stresses due to tangential and normal loads on an elastic solid with application to some contact stress problems. J Appl Mech 20:157–166

    Google Scholar 

  6. Ciavarella M, Hills DA, Monno G (1998) The influence of rounded edges on indentation by a flat punch. J Mech Eng Sci 212(Part C):319–327

    Article  Google Scholar 

  7. Vazquez J, Navarro C, Jaime D (2014) Explicit equations for the half-plane sub-surface stress field under a flat rounded contact. J Strain Anal 49(8):562–570

    Article  Google Scholar 

  8. Ramesh K (2000) Digital photoelasticity: advanced techniques and applications. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  9. Ramesh K (2015) Digital photoelasticity. In: Rastogi P (ed) Digital optical measurement techniques and applications. Artech House, London, UK, pp 289–344

    Google Scholar 

  10. Ramesh K, Gupta S, Kelkar AA (1997) Evaluation of stress field parameters in fracture mechanics by photoelasticity- revisited. Eng Fract Mech 9:189–210

    Google Scholar 

  11. Ramesh K, Ramakrishnan V, Ramya C (2015) New initiatives in single-colour image-based fringe order estimation in digital photoelasticity. J Strain Anal Engng Design September 2. doi:https://doi.org/10.1177/0309324715600044

  12. Ramesh K, Kasimayan T, Neethi Simon B (2011) Digital photoelasticity – a comprehensive review. J Strain Anal Engng Design 46(1):245–266

    Article  Google Scholar 

  13. Ramji M, Ramesh K (2010) Adaptive quality guided phase unwrapping algorithm for whole-field digital photoelastic parameter estimation. Strain 46(2):184–194

    Article  Google Scholar 

  14. Petrucci G (1997) Full-field automatic evaluation of an isoclinic parameter in white light. Exp Mech 37(4):420–426

    Article  Google Scholar 

  15. Brown GM, Sullivan JL (1990) The computer-aided holophotoelastic method. Exp Mech 30(2):135–144

    Article  Google Scholar 

  16. Patterson EA, Wang ZF (1991) Towards full field automated photoelastic analysis of complex components. Strain 27(2):49–56

    Article  Google Scholar 

  17. Ajovalasit A, Barone S, Petrucci G (1998) A method for reducing the influence of the quarterwave plate error in phase-shifting photoelasticity. J Strain Anal Engng Design 33(3):207–216

    Article  Google Scholar 

  18. Ramesh K, Deshmukh SS (1997) Automation of white light photoelasticity by phase-shifting technique using colour image processing hardware. Opt Lasers Eng 28(1):47–60

    Article  Google Scholar 

  19. Vivek R, Ramesh K (2017) Scanning schemes in white light photoelasticity – part II. novel fringe resolution guided scanning scheme. Opt Lasers Eng 92(1):141–149

    Google Scholar 

  20. Ramesh K, Hariprasad MP, Vivek R (2015) Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity. Opt Eng 54(8):081205–081214

    Article  Google Scholar 

  21. Hariprasad MP (2017) New initiatives in digital photoelastic parameter evaluation and its application to contact problems. Ph.D. Thesis, Indian Institute of Technology Madras

  22. Hariprasad MP, Ramesh K (2018) Analysis of contact zones from whole field isochromatics using reflection photoelasticity. Opt Lasers Eng 105(1):86–92

    Article  Google Scholar 

  23. Hariprasad MP, Ramesh K Evaluation of Hertzian contact parameters from whole field displacement data. J Strain Anal Eng Design 52(7):403–409

Download references

Acknowledgements

The authors would like to acknowledge partial support from the IITM-ISRO cell project (APM/14-15/154) for carrying out the research reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramesh.

Appendix 1

Appendix 1

Parameters u1, u2, u3, u6, v1, and v6 used in equations (10)–(15) are functions of x, y, a and b and are defined as

$$ {u}_1\left(x,y\right)=\frac{\sqrt{2\sqrt{c_1}+2{c}_2}}{2} $$
(A.1)
$$ {u}_2\left(x,y\right)=\frac{\ln \left({\gamma}_1\right)}{2} $$
(A.2)
$$ {u}_3\left(x,y\right)=\frac{\ln \left({\gamma}_2\right)}{2} $$
(A.3)
$$ {u}_6\left(x,y\right)=\frac{x\left({x}^2+{y}^2-{a}^2+\sqrt{c_1}\right)}{\sqrt{2{c_1}^{1.5}+2{c}_1{c}_2}} $$
(A.4)
$$ {v}_1\left(x,y\right)=-\operatorname{sgn}(x)\frac{\sqrt{2\sqrt{c_1}-2{c}_2}}{2} $$
(A.5)
$$ {v}_2\left(x,y\right)={\theta}_1-{\theta}_2 $$
(A.6)
$$ {v}_3\left(x,y\right)={\theta}_3-{\theta}_4 $$
(A.7)
$$ {v}_6\left(x,y\right)=-\frac{y\left({x}^2+{y}^2+{a}^2-\sqrt{c_1}\right)}{\sqrt{2{c_1}^{1.5}+2{c}_1{c}_2}} $$
(A.8)

The additional functions used in equations (A.1)–(A.8) are defined as

$$ {\gamma}_1=\frac{\sqrt{c_3}+{c}_5+\sqrt{2{c}_5}\sqrt{\sqrt{c_3}+{c}_4}}{\sqrt{c_3}+{c}_5-\sqrt{2{c}_5}\sqrt{\sqrt{c_3}+{c}_4}} $$
(A.9)
$$ {\gamma}_2=\frac{\sqrt{c_3}+1/{c}_5+\sqrt{2/{c}_5}\sqrt{\sqrt{c_3}+{c}_4}}{\sqrt{c_3}+1/{c}_5-\sqrt{2/{c}_5}\sqrt{\sqrt{c_3}+{c}_4}} $$
(A.10)
$$ {\theta}_1=\arcsin \left[\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}-{c}_4},\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}+{c}_4}+\sqrt{c_5}\right] $$
(A.11)
$$ {\theta}_2=\arcsin \left[\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}-{c}_4},\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}+{c}_4}-\sqrt{c_5}\right] $$
(A.12)
$$ {\theta}_3=\arcsin \left[\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}-{c}_4},\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}+{c}_4}+\sqrt{1/{c}_5}\right] $$
(A.13)
$$ {\theta}_4=\arcsin \left[\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}-{c}_4},\frac{\sqrt{2}}{2}\sqrt{\sqrt{c_3}+{c}_4}-\sqrt{1/{c}_5}\right] $$
(A.14)

With the terms c1,- c5 defined as

$$ {c}_1=\left({\left(a+x\right)}^2+{y}^2\right)\left({\left(a-x\right)}^2+{y}^2\right) $$
(A.15)
$$ {c}_2={x}^2-{y}^2-{a}^2 $$
(A.16)
$$ {c}_3=\frac{{\left(a-x\right)}^2+{y}^2}{{\left(a+x\right)}^2+{y}^2} $$
(A.17)
$$ {c}_4=\frac{a^2-{x}^2-{y}^2}{{\left(a+x\right)}^2+{y}^2} $$
(A.18)
$$ {c}_5=\frac{a-b}{a+b} $$
(A.19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariprasad, M.P., Ramesh, K. & Prabhune, B.C. Evaluation of Conformal and Non-Conformal Contact Parameters Using Digital Photoelasticity. Exp Mech 58, 1249–1263 (2018). https://doi.org/10.1007/s11340-018-0411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0411-6

Keywords

Navigation