Skip to main content
Log in

Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We demonstrate the use of X-ray phase contrast imaging with sub-microsecond temporal resolution to obtain quantitative visualization of dynamic fracture processes in brittle solids. We examine an amorphous solid (fused silica), a ceramic single crystal (single-crystal quartz), and a polycrystalline ceramic (boron carbide), in the form of single-edge notched specimens loaded using a three-point apparatus at nominal strain rates up to \(\sim \)800 s−1. We observe that the crack tip speed for boron carbide is relatively independent of mode I stress intensity factor rate (\(\dot {K}_{\mathrm {I}}\)) for these rates of loading, while that of fused silica and single-crystal quartz increases with \(\dot {K}_{\mathrm {I}}\). Further, for the amorphous and single crystal cases, we observe the development of a crack tip instability in the form of crack branching as the crack tip speed approaches 45% of the Rayleigh wave speed. This suggests that strain-rate-dependent mechanisms contribute to crack branching. Such mechanisms may, in turn, affect the macroscopic fracture properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kimberley J, Ramesh KT, Daphalapurkar NP (2013) A scaling law for the dynamic strength of brittle solids. Acta Mater 61(9):3509–3521. https://doi.org/10.1016/j.actamat.2013.02.045

    Article  Google Scholar 

  2. Curran D (1987) Dynamic failure of solids. Phys Rep 147(5–6):253–388. https://doi.org/10.1016/0370-1573(87)90049-4

    Article  Google Scholar 

  3. Elices M, Guinea GV, Gómez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163. https://doi.org/10.1016/S0013-7944(01)00083-2

    Article  Google Scholar 

  4. Pugno NM (2006) Dynamic quantized fracture mechanics. Int J Fract 140:159–168. https://doi.org/10.1007/s10704-006-0098-z, arXiv:0504501. Kluwer Academic Publishers

    Article  MATH  Google Scholar 

  5. Paliwal B, Ramesh KT (2008) An interacting micro-crack damage model for failure of brittle materials under compression. J Mech Phys Solids 56(3):896–923. https://doi.org/10.1016/j.jmps.2007.06.012

    Article  MATH  Google Scholar 

  6. Menouillard T, Belytschko T (2010) Dynamic fracture with meshfree enriched XFEM. Acta Mech 213:53–69. Springer, Vienna. https://doi.org/10.1007/s00707-009-0275-z

    Article  MATH  Google Scholar 

  7. Lin L, Dhanawade R, Zeng X (2014) Numerical simulations of dynamic fracture growth based on a cohesive zone model with microcracks. J Nanomechanics Micromechanics 4(1994):2–11. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000096

    Google Scholar 

  8. Fineberg J, Bouchbinder E (2015) Recent developments in dynamic fracture: some perspectives. Int J Fract 196(1–2):33–57. https://doi.org/10.1007/s10704-015-0038-x, arXiv:1504.04851

    Article  Google Scholar 

  9. Alhadeff A, Leon SE, Celes W, Paulino GH (2016) Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations. Eng Comput 32(3):533–552. https://doi.org/10.1007/s00366-015-0431-0

    Article  Google Scholar 

  10. Wallner H (1939) Linienstrukturen an bruchflachen. Zeitschrift für Phys 114(5–6):368–378. https://doi.org/10.1007/BF01337002

    Article  Google Scholar 

  11. Takahashi K, Mada T (1985) Ultrasonic fractography studies on discontinuous fracture propagation in polymers. Jpn J Appl Phys 24(S1):196–198. https://doi.org/10.7567/JJAPS.24S1.196

    Article  Google Scholar 

  12. Fineberg J, Sharon E, Cohen G (2003) Crack front waves in dynamic fracture. Int J Fract 121(1–2):55–69. https://doi.org/10.1023/A:1026296929110

    Article  Google Scholar 

  13. Hauch JA, Marder MP (1998) Energy balance in dynamic fracture, investigated by a potential drop technique. Int J Fract 90(2):133–151. https://doi.org/10.1023/A:1007491318198

    Article  Google Scholar 

  14. Field JE (1983) High-speed photography. Contemp Phys 24(5):439–459. https://doi.org/10.1080/00107518308210696

    Article  Google Scholar 

  15. Kimberley J, Ramesh KT, Barnouin OS (2010) Visualization of the failure of quartz under quasi-static and dynamic compression. J Geophys Res 115(B8):B08,207. https://doi.org/10.1029/2009JB007006

    Article  Google Scholar 

  16. Lamberson L, Ramesh K (2015) Spatial and temporal evolution of dynamic damage in single crystal. Mech Mater 87:61–79. https://doi.org/10.1016/j.mechmat.2015.04.003

    Article  Google Scholar 

  17. Chaudhri M (2015) Dynamic fracture of inorganic glasses by hard spherical and conical projectiles. Philos Trans R Soc A 373(2038):373. https://doi.org/10.1098/rsta.2014.0135

    Article  Google Scholar 

  18. Swab JJ, Meredith CS, Casem DT, Gamble WR (2017) Static and dynamic compression strength of hot-pressed boron carbide using a dumbbell-shaped specimen. J Mater Sci 52(17):10,073–10,084. https://doi.org/10.1007/s10853-017-1210-7

    Article  Google Scholar 

  19. Kumpova I, Fila T, Vavrik D, Kersner Z (2015) X-ray dynamic observation of the evolution of the fracture process zone in a quasi-brittle specimen. J Instrum 10(8):C08004. https://doi.org/10.1088/1748-0221/10/08/C08004

  20. Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1–35. https://doi.org/10.1088/0031-9155/58/1/R1

    Article  Google Scholar 

  21. Wilkins SW, Nesterets YI, Gureyev TE, Mayo SC, Pogany A, Stevenson AW (2014) On the evolution and relative merits of hard X-ray phase-contrast imaging methods. Philos Trans A Math Phys Eng Sci 372 (2010):20130,021. https://doi.org/10.1098/rsta.2013.0021

    Article  Google Scholar 

  22. Gureyev TE, Mayo SC, Myers DE, Nesterets Y, Paganin DM, Pogany A, Stevenson AW, Wilkins SW (2009) Refracting Röntgen’s rays: propagation-based x-ray phase contrast for biomedical imaging. J Appl Phys 105(10):102,005. https://doi.org/10.1063/1.3115402

    Article  Google Scholar 

  23. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384(6607):335–338. https://doi.org/10.1038/384335a0

    Article  Google Scholar 

  24. Jensen BJ, Luo SN, Hooks DE, Fezzaa K, Ramos KJ, Yeager JD, Kwiatkowski K, Shimada T, Dattelbaum DM (2012) Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation. AIP Adv 2(1):012,170. https://doi.org/10.1063/1.3696041

    Article  Google Scholar 

  25. Hudspeth M, Claus B, Dubelman S, Black J, Mondal A, Parab N, Funnell C, Hai F, Qi ML, Fezzaa K, Luo SN, Chen W (2013) High speed synchrotron X-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev Sci Instrum 84(2):025,102. https://doi.org/10.1063/1.4789780

    Article  Google Scholar 

  26. Ramos KJ, Jensen BJ, Iverson AJ, Yeager JD, Carlson CA, Montgomery DS, Thompson DG, Fezzaa K, Hooks DE (2014) In situ investigation of the dynamic response of energetic materials using IMPULSE at the Advanced Photon Source. J Phys Conf Ser 500(14):142,028. https://doi.org/10.1088/1742-6596/500/14/142028

    Article  Google Scholar 

  27. Parab ND, Roberts ZA, Harr MH, Mares JO, Casey AD, Gunduz IE, Hudspeth M, Claus B, Sun T, Fezzaa K, Son SF, Chen WW (2016) High speed X-ray phase contrast imaging of energetic composites under dynamic compression. Appl Phys Lett 109(13):131,903. https://doi.org/10.1063/1.4963137

    Article  Google Scholar 

  28. Parab ND, Guo Z, Hudspeth M, Claus B, Lim BH, Sun T, Xiao X, Fezzaa K, Chen WW (2017) In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging. Philos Trans R Soc A Math Phys Eng Sci 375(2085):20160,178. https://doi.org/10.1098/rsta.2016.0178

    Article  Google Scholar 

  29. Parab ND, Guo Z, Hudspeth MC, Claus BJ, Fezzaa K, Sun T, Chen WW (2017b) Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles. Adv Powder Technol 28 (11):2929–2939. https://doi.org/10.1016/j.apt.2017.08.021

    Article  Google Scholar 

  30. Branch B, Ionita A, Clements BE, Montgomery DS, Jensen BJ, Patterson B, Schmalzer A, Mueller A, Dattelbaum DM (2017) Controlling shockwave dynamics using architecture in periodic porous materials. J Appl Phys 121(13). https://doi.org/10.1063/1.4978910

  31. Fan D, Huang JW, Zeng XL, Li Y, JC E, Huang JY, Sun T, Fezzaa K, Wang Z, Luo SN (2016) Simultaneous, single-pulse, synchrotron X-ray imaging and diffraction under gas gun loading. Rev Sci Instrum 87(5):053,903. https://doi.org/10.1063/1.4950869

    Article  Google Scholar 

  32. Casem DT, Dwivedi AK, Swab JJ, Wright JC, Mondal AB (2015) Analysis of a three-bar kolsky apparatus for high-rate three-point flexure. J Dyn Behav Mater 1(1):75–93. https://doi.org/10.1007/s40870-014-0002-2

    Article  Google Scholar 

  33. Follansbee P, Frantz C (1983) Wave propagation in the split Hopkinson pressure bar. J Eng Mater Technol 105(1):61–66. https://doi.org/10.1115/1.3225620

    Article  Google Scholar 

  34. Robinson A (2016) Design, construction, and testing of an intermediate strain rate loading device for synchrotron-based testing of geological materials. Master’s thesis, Johns Hopkins University

  35. Hogan JD, Farbaniec L, Sano T, Shaeffer M, Ramesh KT (2016) The effects of defects on the uniaxial compressive strength and failure of an advanced ceramic. Acta Mater 102:263–272. https://doi.org/10.1016/j.actamat.2015.09.028

    Article  Google Scholar 

  36. Luo SN, Jensen BJ, Hooks DE, Fezzaa K, Ramos KJ, Yeager JD, Kwiatkowski K, Shimada T (2012) Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source. Rev Sci Instrum 83(7):073,903. https://doi.org/10.1063/1.4733704

    Article  Google Scholar 

  37. Sanchez del Rio M, Dejus RJ (2011) XOP v2.4: recent developments of the X-ray optics software toolkit. Proc SPIE 8141:814,115. https://doi.org/10.1117/12.893911

    Article  Google Scholar 

  38. Turkman MAA (2011) Introduction to time series modeling. J Time Ser Anal 32:336–336. https://doi.org/10.1111/j.1467-9892.2010.00692.x

    Article  Google Scholar 

  39. Boston Piezo-Optics Inc. (2007) Crystal quartz. https://www.bostonpiezooptics.com/assets/pdf/CrystalQuartz.pdf, Accessed 19 April 2018

  40. Winter M (2018) Tungsten: physical properties. WebElements. https://www.webelements.com/tungsten/physics.html, Accessed 19 April 2018

  41. Farbaniec L, Hogan J, Mccauley J, Ramesh K (2016) Anisotropy of mechanical properties in a hot-pressed boron carbide. https://doi.org/10.1111/ijac.12585

  42. ABAQUS (2014) ABAQUS documentation. Providence

  43. Kumar A, Kaminski S, Melkote SN, Arcona C (2016) Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers. Wear 364–365:163–168. https://doi.org/10.1016/j.wear.2016.07.009

    Article  Google Scholar 

  44. Hogan JD, Farbaniec L, Mallick D, Domnich V, Kuwelkar K, Sano T, McCauley JW, Ramesh KT (2017) Fragmentation of an advanced ceramic under ballistic impact: mechanisms and microstructure. Int J Impact Eng 102:47–54. https://doi.org/10.1016/j.ijimpeng.2016.12.008

    Article  Google Scholar 

  45. Vinh PC, Ogden RW (2005) On the Rayleigh wave speed in orthotropic elastic solids. Meccanica 40(2):147–161. https://doi.org/10.1007/s11012-005-1603-6

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou F, Molinari JF, Li Y (2004) Three-dimensional numerical simulations of dynamic fracture in silicon carbide reinforced aluminum. Eng Fract Mech 71(9–10):1357–1378. https://doi.org/10.1016/S0013-7944(03)00168-1

    Article  Google Scholar 

  47. Gureyev TE, Nesterets YI, Stevenson AW, Miller PR, Pogany A, Wilkins SW (2008) Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging. Opt Express 16 (5):3223–3241. https://doi.org/10.1364/OE.16.003223

    Article  Google Scholar 

  48. Freund LB (1990) Dynamic fracture mechanics. Cambridge monographs on mechanics. Cambridge University Press, New York

    Book  Google Scholar 

  49. Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10):7128–7139. https://doi.org/10.1103/PhysRevB.54.7128

    Article  Google Scholar 

  50. Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27(3–4):187–201. https://doi.org/10.1007/BF00017967

    Article  Google Scholar 

  51. Katzav E, Adda-Bedia M, Arias R (2007) Theory of dynamic crack branching in brittle materials. Int J Fract 143(3):245–271. https://doi.org/10.1007/s10704-007-9061-x

    Article  MATH  Google Scholar 

  52. Revol JL, Berkvens P, Biasci JC, Bouteille JF, Carmignani N, Ewald F, Farvacque L, Franchi A, Goirand L, Hahn M, Hardy L, Jacob J, Koch JM, Bec GL, Liuzzo S, Nash B, Perron T, Plouviez E, Raimondi P, Scheidt K, Serriėre V (2013) ESRF upgrade phase II status. Ipac2013, pp 209–212

Download references

Acknowledgements

We gratefully acknowledge Seyed Koohpayeh for use of a Laue X-ray diffractometer; Brian Schuster for the loan of the high-speed camera; Alex Deriy for technical support of the experiments at APS; Eliara Torres da Costa and Chris Meredith for assistance with data collection at APS; and D. Mallick for proofreading an early draft of the paper.

This work was supported (in part) by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-15-1-0056, to Johns Hopkins University; and (in part) by the Army Research Laboratory under Cooperative Agreement No. W911NF-12-2-0022. The content, views, and conclusions contained in this document are those of the authors and should not be interpreted as representing the official positions or policies, either expressed or implied, of the Defense Threat Reduction Agency, the Army Research Laboratory, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.

This publication is based upon work performed at the Dynamic Compression Sector, which is operated by Washington State University under the U.S. Department of Energy (DOE)/National Nuclear Security Administration award no. DE-NA0002442. This research used resources of the Advanced Photon Source, a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. T. Leong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, A.F.T., Robinson, A.K., Fezzaa, K. et al. Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging. Exp Mech 58, 1423–1437 (2018). https://doi.org/10.1007/s11340-018-0414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0414-3

Keywords

Navigation