Skip to main content
Log in

Mechanical Properties of Printed Epoxy-Carbon Fiber Composites

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Despite the promise of additive manufacturing (AM) to bring unprecedented agility and design freedom to manufactured components, structural applications remain largely out of reach due to material restrictions – notably the lack of a mature AM process for reinforced thermoset composites. AM is also hindered by process-induced defects such as porosity and unfavorable microstructure. This research shows that a direct write AM process for epoxy / chopped carbon fiber composites can simultaneously achieve a high degree of fiber alignment and low degree of porosity, obtaining 90% of the theoretical tensile modulus and 66% of the theoretical tensile strength for a fully aligned composite. These values exceed those of compression molded properties for the same material. Transverse properties of AM samples were roughly half of the longitudinal properties but showed no statistically significant difference from the matrix material, suggesting that the process may not adversely affect microstructure. The addition of only 5.5 vol% carbon fiber more than doubled the strength and stiffness of the neat epoxy, and more than tripled the properties of ABS thermoplastic while achieving a higher glass transition temperature. Flexural properties show similar trends. SEM and CT imaging shows that fiber orientation is largely maintained in the print direction and cross-section micrographs show there is sufficient local material flow during deposition to achieve low porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. SpeedMixer model DAC 150 FVZ, FlackTek Inc., https://speedmixer.com

  2. THINKY model ARV-310, THINKY Corp., https://thinkyusa.com

References

  1. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, New York

    Book  Google Scholar 

  2. Brackett D, Ashcroft I, Hague R (2011) Topology optimization for additive manufacturing. In: Proceedings of the solid freeform fabrication symposium, Austin, TX

  3. Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192. https://doi.org/10.1007/s00158-015-1274-4

    Article  Google Scholar 

  4. Yang S, Tang Y, Zhao YF (2015) A new part consolidation method to embrace the design freedom of additive manufacturing. J Manuf Process 20:444–449. https://doi.org/10.1016/j.jmapro.2015.06.024

    Article  Google Scholar 

  5. Yang S, Zhao YF (2015) Additive manufacturing-enabled design theory and methodology: a critical review. Int J Adv Manuf Technol 80(1):327–342. https://doi.org/10.1007/s00170-015-6994-5

    Article  Google Scholar 

  6. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9):1147–1155. https://doi.org/10.1007/s00170-011-3878-1

    Article  Google Scholar 

  7. Groover MP (2015) Fundamentals of modern manufacturing: materials, processes, and systems, 6th edn. Wiley, New York

    Google Scholar 

  8. Mai J, Zhang L, Tao F, Ren L (2016) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1):71–83. https://doi.org/10.1007/s00170-015-7871-y

    Article  Google Scholar 

  9. Kading B, Straub J (2015) Utilizing in-situ resources and 3D printing structures for a manned Mars mission. Acta Astronautica 107:317–326. https://doi.org/10.1016/j.actaastro.2014.11.036

    Article  Google Scholar 

  10. Wong JY (2016) 3D printing applications for space missions. Aerosp Med Hum Perform 87(6):580–582. https://doi.org/10.3357/AMHP.4633.2016

    Article  Google Scholar 

  11. Cozier AD, Harned KE, Riley MA, Raabe BH, Sommers AD, Pierson HA (2015) Additive manufacturing in the design of an engine air particle separator. Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition, Houston, TX. Volume 1: advances in aerospace technology. https://doi.org/10.1115/IMECE2015-51592

  12. Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyp J 22(2):281–299. https://doi.org/10.1108/RPJ-04-2014-0048

    Article  Google Scholar 

  13. Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72–80. https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  14. Pierson HA, Chivukula B (2018) Process–property relationships for fused filament fabrication on preexisting polymer substrates. J Manuf Sci Eng 140(8):084501–084501-084506. https://doi.org/10.1115/1.4039766

    Article  Google Scholar 

  15. Abbott AC, Tandon GP, Bradford RL, Koerner H, Baur JW (2018) Process-structure-property effects on ABS bond strength in fused filament fabrication. Addit Manuf 19:29–38. https://doi.org/10.1016/j.addma.2017.11.002

    Article  Google Scholar 

  16. Oztan C, Karkkainen R, Fittipaldi M, Nygren G, Roberson L, Lane M, Celik E (2018) Microstructure and mechanical properties of three dimensional-printed continuous fiber composites. J Compos Mater 53:271–280. https://doi.org/10.1177/0021998318781938

    Article  Google Scholar 

  17. Dawoud M, Taha I, Ebeid SJ (2016) Mechanical behaviour of ABS: an experimental study using FDM and injection moulding techniques. J Manuf Process 21:39–45. https://doi.org/10.1016/j.jmapro.2015.11.002

    Article  Google Scholar 

  18. Szykiedans K, Credo W, Osinski D (2017) Selected mechanical properties of PETG 3-D prints. Procedia Eng 177:455–461. https://doi.org/10.1016/j.proeng.2017.02.245

    Article  Google Scholar 

  19. Letcher T, Waytashek M (2014) Material property testing of 3d-printed specimen in Pla on an entry-level 3d printer. In: Proceedings of the Asme international mechanical engineering congress and exposition, vol 2a

  20. Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21:1–16. https://doi.org/10.1016/j.addma.2018.01.002

    Article  Google Scholar 

  21. Ning FD, Cong WL, Qiu JJ, Wei JH, Wang SR (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B 80:369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  22. Zhong WH, Li F, Zhang ZG, Song LL, Li ZM (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301(2):125–130. https://doi.org/10.1016/S0921-5093(00)01810-4

    Article  Google Scholar 

  23. Quan ZZ, Larimore Z, Wu A, Yu JY, Qin XH, Mirotznik M, Suhr J, Byun JH, Oh Y, Chou TW (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 126:139–148. https://doi.org/10.1016/j.compscitech.2016.02.021

    Article  Google Scholar 

  24. Araya-Calvo M, López-Gómez I, Chamberlain-Simon N, León-Salazar JL, Guillén-Girón T, Corrales-Cordero JS, Sánchez-Brenes O (2018) Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology. Addit Manuf 22:157–164. https://doi.org/10.1016/j.addma.2018.05.007

    Article  Google Scholar 

  25. Blok LG, Longana ML, Yu H, Woods BKS (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176–186. https://doi.org/10.1016/j.addma.2018.04.039

    Article  Google Scholar 

  26. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–593+. https://doi.org/10.1002/adma.201401804

    Article  Google Scholar 

  27. Hmeidat NS, Kemp JW, Compton BG (2018) High-strength epoxy nanocomposites for 3D printing. Compos Sci Technol 160:9–20. https://doi.org/10.1016/j.compscitech.2018.03.008

    Article  Google Scholar 

  28. Raney JR, Compton BG, Mueller J, Ober TJ, Shea K, Lewis JA (2018) Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc Natl Acad Sci U S A 115(6):1198–1203. https://doi.org/10.1073/pnas.1715157115

    Article  Google Scholar 

  29. Ozsoy N, Ozsoy M, Mimaroglu A (2016) Mechanical properties of chopped carbon Fiber reinforced epoxy composites. Acta Phys Pol A 130(1):297–299. https://doi.org/10.12693/APhysPolA.130.297

    Article  Google Scholar 

  30. Koerner H, Misra D, Tan A, Drummy L, Mirau P, Vaia R (2006) Montmorillonite-thermoset nanocomposites via cryo-compounding. Polymer 47(10):3426–3435. https://doi.org/10.1016/j.polymer.2006.03.057

    Article  Google Scholar 

  31. Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333. https://doi.org/10.1002/pc.750050413

    Article  Google Scholar 

  32. Ashby MF (2011) Materials selection in mechanical design, 4th edn. Elsevier, Burlington

    Google Scholar 

  33. Van Hattum F, Bernardo C (1999) A model to predict the strength of short fiber composites. J Polym Comp 20(4):524–533

    Article  Google Scholar 

  34. Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462. https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  35. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  36. Koerner H, Jacobs J, Tomlin DW, Busbee JD, Vaia R (2004) Tuning polymer nanocomposite morphology: AC electric field manipulation of epoxy–montmorillonite (clay) suspensions. Adv Mater 16(4):297–302

    Article  Google Scholar 

  37. Steger C (1998) An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 20(2):113–125. https://doi.org/10.1109/34.659930

    Article  Google Scholar 

  38. Vardeman SB (1994) Statistics for engineering problem solving. Thomson Learning EMEA, Limited

  39. HexCel Corp. (2018) HexTow AS4 carbon Fiber product data sheet. https://www.hexcel.com/user_area/content_media/raw/AS4_HexTow_DataSheet.pdf

  40. Zhang SJ, To S (2013) The effects of spindle vibration on surface generation in ultra-precision raster milling. Int J Mach Tools Manuf 71:52–56. https://doi.org/10.1016/j.ijmachtools.2013.04.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support for the AFRL Summer Faculty Program, Minority Leaders Program, and International Cooperative Research and Development Fund, as well as the technical contributions from Prof. Brett Compton on ink formulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Baur.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 3 Fiber length (μm) distribution parameters

Appendix 2

Fig. 16
figure 16

Representative stress-strain plots for AM samples

Fig. 17
figure 17

Representative stress-strain plots for compression molded samples

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierson, H.A., Celik, E., Abbott, A. et al. Mechanical Properties of Printed Epoxy-Carbon Fiber Composites. Exp Mech 59, 843–857 (2019). https://doi.org/10.1007/s11340-019-00498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00498-z

Keywords

Navigation