Skip to main content
Log in

Quasi-Static and High Strain Rate Simple Shear Characterization of Soft Polymers

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The simple shear response of soft polymers under large deformation (>50%) and strain rates spanning 10−3 – 103 s−1 is characterized by developing quasi-static and split-Hopkinson pressure bar based single-pulse dynamic simple shear experiments rooted in continuum mechanics fundamentals. Cross-linked polydimethylsiloxane (PDMS) is chosen as a model material. By examining the evolution of stress, strain and strain rate, the latter two parameters measured using two-dimensional digital image correlation (DIC), it is demonstrated that dynamic simple shear deformation consists of four distinct stages: momentum diffusion, inertia effect, steady-state material response, and strain rate decay. By isolating the unsteady and steady-state deformation stages, inertia-free material response is captured under a uniform strain rate. It is shown that the shear response of PDMS is nearly linear with a weakly rate-sensitive shear modulus in the investigated strain rate range. Further, by analyzing the DIC strain-field and comparing the kinematic experimental results with those predicted by classical continuum mechanics, it is demonstrated that the proposed experiments not only achieve a nearly theoretical simple shear state that is uniform across the specimen, but also allow for post-test validation of individual experiments based on these criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roberts JC, Merkle AC, Biermann PJ et al (2007) Computational and experimental models of the human torso for non-penetrating ballistic impact. J Biomech 40:125–136. https://doi.org/10.1016/j.jbiomech.2005.11.003

    Article  Google Scholar 

  2. Merkle AC, Ward EE, OʼConnor JV, Roberts JC (2008) Assessing Behind Armor Blunt Trauma (BABT) Under NIJ Standard-0101.04 Conditions Using Human Torso Models. J Trauma Inj Infect Crit Care 64:1555–1561. https://doi.org/10.1097/TA.0b013e318160ff3a

    Article  Google Scholar 

  3. Chatelin S, Deck C, Willinger R (2013) An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. J Biorheol 27:26–37. https://doi.org/10.1007/s12573-012-0055-6

    Article  Google Scholar 

  4. Joldes GR, Wittek A, Miller K (2009) Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med Image Anal 13:912–919. https://doi.org/10.1016/j.media.2008.12.001

    Article  Google Scholar 

  5. Groves RB, Coulman SA, Birchall JC, Evans SL (2013) An anisotropic, hyperelastic model for skin: Experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater 18:167–180. https://doi.org/10.1016/j.jmbbm.2012.10.021

    Article  Google Scholar 

  6. Misra S, Ramesh KT, Okamura AM (2008) Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review. Presence Teleoperators Virtual Environ 17:463–491. https://doi.org/10.1162/pres.17.5.463

    Article  Google Scholar 

  7. Jennifer M, Cronin DS, Worswick M, et al (2001) Numerical Modelling of a Simplified Surrogate Leg Subject To an Anti-Personnel Blast Mine. In: Proceedings of the 19th International Symposium of Ballistics. Interlaken, pp 913–919

  8. Kohandel M, Sivaloganathan S, Tenti G, Darvish K (2005) Frequency dependence of complex moduli of brain tissue using a fractional Zener model. Phys Med Biol 50:2799–2805. https://doi.org/10.1088/0031-9155/50/12/005

    Article  Google Scholar 

  9. Parnaik Y, Beillas P, Demetropoulos CK et al (2004) The influence of surrogate blood vessels on the impact response of a physical model of the brain. Stapp Car Crash J 48:259–277

    Google Scholar 

  10. Doorly MC, Gilchrist MD (2006) The use of accident reconstruction for the analysis of traumatic brain injury due to head impacts arising from falls. Comput Methods Biomech Biomed Engin 9:371–377. https://doi.org/10.1080/10255840601003551

    Article  Google Scholar 

  11. Kleiven S (2007) Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J 51:81–114

    Google Scholar 

  12. Harrigan TP, Roberts JC, Ward EE, Merkle AC (2010) Correlating Tissue Response with Anatomical Location of mTBI Using a Human Head Finite Element Model under Simulated Blast Conditions. In: IFMBE Proceedings. pp 18–21

  13. Normand V, Lootens DL, Amici E et al (2000) New insight into agarose gel mechanical properties. Biomacromolecules 1:730–738. https://doi.org/10.1021/bm005583j

    Article  Google Scholar 

  14. Miller K (2005) Method of testing very soft biological tissues in compression. J Biomech 38:153–158. https://doi.org/10.1016/j.jbiomech.2004.03.004

    Article  Google Scholar 

  15. Forte AE, Galvan S, Manieri F et al (2016) A composite hydrogel for brain tissue phantoms. Mater Des 112:227–238. https://doi.org/10.1016/j.matdes.2016.09.063

    Article  Google Scholar 

  16. Pervin F, Chen WW (2009) Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J Biomech 42:731–735. https://doi.org/10.1016/j.jbiomech.2009.01.023

    Article  Google Scholar 

  17. Naarayan SS, Subhash G (2017) Wave propagation in ballistic gelatine. J Mech Behav Biomed Mater 68:32–41. https://doi.org/10.1016/j.jmbbm.2017.01.030

    Article  Google Scholar 

  18. Subhash G, Liu Q, Moore DF et al (2011) Concentration Dependence of Tensile Behavior in Agarose Gel Using Digital Image Correlation. Exp Mech 51:255–262. https://doi.org/10.1007/s11340-010-9354-2

    Article  Google Scholar 

  19. Singh A, Lu Y, Chen C, M Cavanaugh J (2006) Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J Biomech 39:1669–1676. https://doi.org/10.1016/j.jbiomech.2005.04.023

    Article  Google Scholar 

  20. Shim VPW, Liu JF, Lee VS (2006) A Technique for Dynamic Tensile Testing of Human Cervical Spine Ligaments. Exp Mech 46:77–89. https://doi.org/10.1007/s11340-006-5865-2

    Article  Google Scholar 

  21. Yang LM, Shim VPW, Lim CT (2000) A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. Int J Impact Eng 24:545–560. https://doi.org/10.1016/S0734-743X(99)00044-5

    Article  Google Scholar 

  22. Sasson A, Patchornik S, Eliasy R et al (2012) Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-Experimental testing and constitutive modeling. J Mech Behav Biomed Mater 8:143–153. https://doi.org/10.1016/j.jmbbm.2011.12.008

    Article  Google Scholar 

  23. Rashid B, Destrade M, Gilchrist MD (2014) Mechanical characterization of brain tissue in tension at dynamic strain rates. J Mech Behav Biomed Mater 33:43–54. https://doi.org/10.1016/j.jmbbm.2012.07.015

    Article  Google Scholar 

  24. Ogden RW (1972) Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids. Proc R Soc A Math Phys Eng Sci 328:567–583. https://doi.org/10.1098/rspa.1972.0096

    Article  MATH  Google Scholar 

  25. Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34:484–502. https://doi.org/10.1007/s00466-004-0593-y

    Article  MATH  Google Scholar 

  26. Upadhyay K, Subhash G, Spearot D (2019) Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids. J Mech Phys Solids 124:115–142. https://doi.org/10.1016/j.jmps.2018.09.038

    Article  MathSciNet  Google Scholar 

  27. Arbogast KB, Thibault KL, Scott Pinheiro B et al (1997) A high-frequency shear device for testing soft biological tissues. J Biomech 30:757–759. https://doi.org/10.1016/S0021-9290(97)00023-7

    Article  Google Scholar 

  28. Bilston LE, Liu Z, Phan-Thien N (2001) Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38:335–345

    Google Scholar 

  29. Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409. https://doi.org/10.1109/TUFFC.2004.1295425

    Article  Google Scholar 

  30. Jiang Y, Li G, Qian L-X et al (2015) Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis. Biomech Model Mechanobiol 14:1119–1128. https://doi.org/10.1007/s10237-015-0658-0

    Article  Google Scholar 

  31. Nasseri S, Bilston LE, Phan-Thien N (2002) Viscoelastic properties of pig kidney in shear, experimental results and modelling. Rheol Acta 41:180–192. https://doi.org/10.1007/s003970200017

    Article  Google Scholar 

  32. Hrapko M, van Dommelen JAW, Peters GWM, Wismans JSHM (2008) Characterisation of the mechanical behaviour of brain tissue in compression and shear. Biorheology 45:663–676. https://doi.org/10.3233/BIR-2008-0512

    Article  Google Scholar 

  33. Saraf H, Ramesh KT, Lennon AM et al (2007) Measurement of the Dynamic Bulk and Shear Response of Soft Human Tissues. Exp Mech 47:439–449. https://doi.org/10.1007/s11340-007-9052-x

    Article  Google Scholar 

  34. Trexler MM, Lennon AM, Wickwire AC et al (2011) Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading. J Mech Behav Biomed Mater 4:1920–1928. https://doi.org/10.1016/j.jmbbm.2011.06.008

    Article  Google Scholar 

  35. Pasumarthy RKA, Tippur HV (2016) Mechanical and optical characterization of a tissue surrogate polymer gel. Polym Test 55:219–229. https://doi.org/10.1016/j.polymertesting.2016.08.004

    Article  Google Scholar 

  36. G’Sell C, Boni S, Shrivastava S (1983) Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains. J Mater Sci 18:903–918. https://doi.org/10.1007/BF00745590

    Article  Google Scholar 

  37. Subhash G, Kwon J, Mei R, Moore DF (2012) Non-Newtonian Behavior of Ballistic Gelatin at High Shear Rates. Exp Mech 52:551–560. https://doi.org/10.1007/s11340-011-9513-0

    Article  Google Scholar 

  38. Van Sligtenhorst C, Cronin DS, Wayne Brodland G (2006) High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus. J Biomech 39:1852–1858. https://doi.org/10.1016/j.jbiomech.2005.05.015

    Article  Google Scholar 

  39. Zanon AG, Cardoso PN, Moreira CS, da Silva Nunes LC (2015) Mechanical behavior of silicone rubber reinforced with parallel fibers of nylon under simple shear: a study on artificial soft tissue. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, Rio de Janeiro

    Google Scholar 

  40. Nunes LCS (2011) Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Mater Sci Eng A 528:1799–1804. https://doi.org/10.1016/j.msea.2010.11.025

    Article  Google Scholar 

  41. Nunes LCS (2010) Shear modulus estimation of the polymer polydimethylsiloxane (PDMS) using digital image correlation. Mater Des 31:583–588. https://doi.org/10.1016/j.matdes.2009.07.012

    Article  Google Scholar 

  42. Rashid B, Destrade M, Gilchrist MD (2013) Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J Mech Behav Biomed Mater 28:71–85. https://doi.org/10.1016/j.jmbbm.2013.07.017

    Article  Google Scholar 

  43. Kwon J, Subhash G, Mei R, Heger I (2011) An optical technique for determination of rheological properties of gelatin. J Rheol (N Y N Y) 55:951–964. https://doi.org/10.1122/1.3599676

    Article  Google Scholar 

  44. Nie X, Prabhu R, Chen WW et al (2011) A Kolsky Torsion Bar Technique for Characterization of Dynamic Shear Response of Soft Materials. Exp Mech 51:1527–1534. https://doi.org/10.1007/s11340-011-9481-4

    Article  Google Scholar 

  45. Gilat A (2000) Torsional Kolsky Bar Testing. Mater Park OH ASM Int 2000 505–515

  46. Sanborn B, Nie X, Chen W, Weerasooriya T (2012) High Strain Rate Pure Shear and Axial Compressive Response of Porcine Lung Tissue. J Appl Mech 80:011029. https://doi.org/10.1115/1.4007222

    Article  Google Scholar 

  47. Puglisi G, Saccomandi G (2016) Multi-scale modelling of rubber-like materials and soft tissues: An appraisal. Proc R Soc A Math Phys Eng Sci 472:20160060. https://doi.org/10.1098/rspa.2016.0060

    Article  Google Scholar 

  48. Saccomandi G (2018) Ut vis sic tensio. Theor Appl Mech 45:1–15. https://doi.org/10.2298/TAM170703011S

    Article  Google Scholar 

  49. Nie X, Song B, Ge Y et al (2009) Dynamic Tensile Testing of Soft Materials. Exp Mech 49:451–458. https://doi.org/10.1007/s11340-008-9133-5

    Article  Google Scholar 

  50. Pedraza E, Brady A-C, Fraker CA, Stabler CL (2013) Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. J Biomater Sci Polym Ed 24:1041–1056. https://doi.org/10.1080/09205063.2012.735097

    Article  Google Scholar 

  51. Mohanty S, Larsen LB, Trifol J et al (2015) Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater Sci Eng C 55:569–578. https://doi.org/10.1016/j.msec.2015.06.002

    Article  Google Scholar 

  52. Payne T, Mitchell S, Halkon B et al (2016) Development of a synthetic human thigh impact surrogate for sports personal protective equipment testing. Proc Inst Mech Eng Part P J Sport Eng Technol 230:5–16. https://doi.org/10.1177/1754337115582294

    Article  Google Scholar 

  53. Payne T, Mitchell S, Bibb R, Waters M (2015) The evaluation of new multi-material human soft tissue simulants for sports impact surrogates. J Mech Behav Biomed Mater 41:336–356. https://doi.org/10.1016/j.jmbbm.2014.09.018

    Article  Google Scholar 

  54. Gilchrist MD, Rashid B, Murphy JG, Saccomandi G (2013) Quasi-static deformations of biological soft tissue. Math Mech Solids 18:622–633. https://doi.org/10.1177/1081286513485770

    Article  MathSciNet  Google Scholar 

  55. Wex C, Arndt S, Stoll A et al (2015) Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: A review. Biomed Tech 60:577–592. https://doi.org/10.1515/bmt-2014-0146

    Article  Google Scholar 

  56. Mihai LA, Budday S, Holzapfel GA et al (2017) A family of hyperelastic models for human brain tissue. J Mech Phys Solids 106:60–79. https://doi.org/10.1016/j.jmps.2017.05.015

    Article  MathSciNet  Google Scholar 

  57. Boni S, G’Sell C, Weynant E, Haudin JM (1982) Microscopic in situ observation of the plastic deformation of polybutene-1 films under simple shear. Polym Test 3:3–24. https://doi.org/10.1016/0142-9418(82)90009-5

    Article  Google Scholar 

  58. Bleich F (1952) Buckling strength of metal structures, 1st edn. McGraw-Hill, New York

    Google Scholar 

  59. Wirthl D, Pichler R, Drack M et al (2017) Instant tough bonding of hydrogels for soft machines and electronics. Sci Adv 3:1–10. https://doi.org/10.1126/sciadv.1700053

    Article  Google Scholar 

  60. Wang M, Kornfield JA (2012) Measuring shear strength of soft-tissue adhesives. J Biomed Mater Res Part B Appl Biomater 100B:618–623. https://doi.org/10.1002/jbm.b.31981

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation under Grant Nos. CMMI-1634188 and CMMI-1762791 to the University of Florida, Gainesville, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Subhash.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, K., Bhattacharyya, A., Subhash, G. et al. Quasi-Static and High Strain Rate Simple Shear Characterization of Soft Polymers. Exp Mech 59, 733–747 (2019). https://doi.org/10.1007/s11340-019-00507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00507-1

Keywords

Navigation