Skip to main content
Log in

Parametric Experimentation on Pantographic Unit Cells Reveals Local Extremum Configuration

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Pantographic metamaterials are known for their ability to have large deformation while remaining in the elastic regime. We have performed a set of experiments on 3D printed pantographic unit cells to parametrically investigate their response when undergoing tensile, compression, and shear loading with the aim of i) studying the role of each parameter in the resultant mechanical behavior of the sample, and ii) providing a benchmark for the mathematical models developed to describe pantographic structures. Results show the existence of local extrema in the space of the geometrical parameters, suggesting the use of optimization techniques to find optimal geometrical parameters resulting in desired functionalities. We have also performed tensile relaxation tests on the samples, with the results indicating the complexity of the dynamic behavior and the existence of multiple relaxation characteristic times. Such results can be used to for calibrating mathematical models describing pantographic structures under dynamic loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barchiesi E, Spagnuolo M, Placidi L (2019) Mechanical metamaterials: a state of the art. Math Mech Solids 24(1):212–234

    MathSciNet  MATH  Google Scholar 

  2. Placidi L, Rosi G, Barchiesi E (2019) Analytical solutions of 2-dimensional second gradient linear elasticity for continua with cubic-d 4 microstructure. In: New Achievements in Continuum Mechanics and Thermodynamics, Springer, pp 383–401

  3. dell’Isola F, Seppecher P, Alibert JJ, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D, Giorgio I, Andreaus U, Turco E et al (2018) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin Mech Thermodyn 1–34. https://doi.org/10.1007/s00161-018-0689-8

  4. Misra A, Lekszycki T, Giorgio I, Ganzosch G, Müller WH, dell’Isola F (2018) Pantographic metamaterials show atypical poynting effect reversal. Mech Res Commun 89:6–10

    Google Scholar 

  5. dell’Isola F, Lekszycki T, Pawlikowski M, Grygoruk R, Greco L (2015) Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66:3473–3498

    MathSciNet  MATH  Google Scholar 

  6. Placidi L, Barchiesi E, Turco E, Rizzi NL (2016) A review on 2d models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5):121

    MathSciNet  MATH  Google Scholar 

  7. Barchiesi E, Placidi L (2017) A review on models for the 3d statics and 2d dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, Springer, pp 239–258

  8. Auffray N, dell’Isola F, Eremeyev V, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 20 (4):375–417

    MathSciNet  MATH  Google Scholar 

  9. Spagnuolo M, Andreaus U (2019) A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math Mech Solids 24(1):258–280

    MathSciNet  MATH  Google Scholar 

  10. Franciosi P, Spagnuolo M, Salman OU (2018) Mean green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin Mech Thermodyn 1–32

  11. Pietraszkiewicz W, Eremeyev V (2009) On natural strain measures of the non-linear micropolar continuum. Int J Solids Struct 46(3):774–787

    MathSciNet  MATH  Google Scholar 

  12. Altenbach H, Eremeyev V (2009) On the linear theory of micropolar plates. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 89(4):242–256

    MathSciNet  MATH  Google Scholar 

  13. Misra A, Poorsolhjouy P (2015) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Mathematics and Mechanics of Solids p 1081286515576821

  14. Misra A, Singh V (2015) Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin Mech Thermodyn 27(4-5):787

    MathSciNet  MATH  Google Scholar 

  15. Yang Y, Misra A (2012) Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int J Solids Struct 49(18):2500–2514

    Google Scholar 

  16. Misra A, Poorsolhjouy P (2017) Grain-and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech Res Commun 81:1–6

    Google Scholar 

  17. Misra A, Poorsolhjouy P (2015) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Mathematics and Mechanics of Complex Systems 3(3):285–308

    MathSciNet  MATH  Google Scholar 

  18. Misra A, Poorsolhjouy P (2016) Granular micromechanics based micromorphic model predicts frequency band gaps. Contin Mech Thermodyn 28(1-2):215–234

    MathSciNet  MATH  Google Scholar 

  19. Nejadsadeghi N, Placidi L, Romeo M, Misra A (2019) Frequency band gaps in dielectric granular metamaterials modulated by electric field. Mech Res Commun 95:96–103. https://doi.org/10.1016/j.mechrescom.2019.01.006

    Google Scholar 

  20. Lurie SA, Kalamkarov AL, Solyaev YO, Ustenko AD, Volkov AV (2018) Continuum micro-dilatation modeling of auxetic metamaterials. Int J Solids Struct 132:188–200

    Google Scholar 

  21. Solyaev Y, Lurie S, Ustenko A (2018) Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Contin Mech Thermodyn 1–9. https://doi.org/10.1007/s00161-018-0730-y

  22. Altenbach H, Eremeyev VA (2008) On the bending of viscoelastic plates made of polymer foams. Acta Mech 204(3):137

    MATH  Google Scholar 

  23. Altenbach H, Eremeyev V (2008) Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 88(5):332–341

    MathSciNet  MATH  Google Scholar 

  24. Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8(1):51–73

    MathSciNet  MATH  Google Scholar 

  25. Seppecher P, Alibert JJ, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol 319. IOP Publishing, p 012018

  26. Placidi L, Andreaus U, Giorgio I (2017) Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J Eng Math 103:1–21. https://doi.org/10.1007/s10665-016-9856-8

    MathSciNet  MATH  Google Scholar 

  27. dell’Isola F, Giorgio I, Pawlikowski M, Rizzi N (2016) Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proc r Soc a, vol 472. The Royal Society, p 20150790

  28. Steigmann D, dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech Sinica 31(3):373–382

    MathSciNet  MATH  Google Scholar 

  29. Turco E, dell’Isola F, Cazzani A, Rizzi N (2016) Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67:85. https://doi.org/10.1007/s00033-016-0681-8

    MathSciNet  MATH  Google Scholar 

  30. De Angelo M, Barchiesi E, Giorgio I, Abali BE (2019) Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling. Arch Appl Mech 1–26. https://doi.org/10.1007/s00419-018-01506-9

  31. Placidi L, Barchiesi E, Della Corte A (2017) Identification of two-dimensional pantographic structures with a linear d4 orthotropic second gradient elastic model accounting for external bulk double forces. In: Mathematical Modelling in Solid Mechanics, Springer, pp 211–232

  32. Turco E, Giorgio I, Misra A, dell’Isola F (2017) King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R Soc Open Sci 4(10):171153

    Google Scholar 

  33. Giorgio I, Rizzi N, Turco E (2017) Continuum moing of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc R Soc A 473(2207):20170636

    MATH  Google Scholar 

  34. Challamel N, Kocsis A, Wang C (2015) Discrete and non-local elastica. Int J Non Linear Mech 77:128–140

    Google Scholar 

  35. Turco E, Misra A, Pawlikowski M, dell’Isola F, Hild F (2018) Enhanced piola–hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. International Journal of Solids and Structures

  36. Turco E, Misra A, Sarikaya R, Lekszycki T (2019) Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling. Contin Mech Thermodyn 31:209–223. https://doi.org/10.1007/s00161-018-0678-y

    MathSciNet  Google Scholar 

  37. Giorgio I (2016) Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures Zeitschrift für angewandte Mathematik und Physik 67:95. https://doi.org/10.1007/s00033-016-0692-5

  38. Battista A, Cardillo C, Del Vescovo D, Rizzi N, Turco E (2015) Frequency shifts induced by large deformations in planar pantographic continua. Nanomechanics Science and Technology: An International Journal 6(2):161–178. https://doi.org/10.1615/NanomechanicsSciTechnolIntJ

    Google Scholar 

  39. Boutin C, Giorgio I, Placidi L et al (2017) Linear pantographic sheets: Asymptotic micro-macro models identification. Mathematics and Mechanics of Complex Systems 5(2):127– 162

    MathSciNet  MATH  Google Scholar 

  40. Eremeyev VA, dell’Isola F, Boutin C, Steigmann D (2018) Linear pantographic sheets: existence and uniqueness of weak solutions. J Elast 132(2):175–196

    MathSciNet  MATH  Google Scholar 

  41. Rahali Y, Giorgio I, Ganghoffer J, dell’Isola F (2015) Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 97:148–172

    MathSciNet  MATH  Google Scholar 

  42. Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A ritz approach for the static analysis of planar pantographic structures modeled with nonlinear euler–Bernoulli beams. Contin Mech Thermodyn 30:1103. https://doi.org/10.1007/s00161-018-0665-3

    MathSciNet  MATH  Google Scholar 

  43. Turco E, Barcz K, Pawlikowski M, Rizzi N (2016) Non-standard coupled extensional and bending bias tests for planar pantographic lattices. part i: numerical simulations. Zeitschrift für angewandte Mathematik und Physik 67(5):122

    MathSciNet  MATH  Google Scholar 

  44. Turco E, Golaszewski M, Giorgio I, D’Annibale F (2017) Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations. Compos Part B Eng 118:1–14

    Google Scholar 

  45. Ganzosch G, Hoschke K, Lekszycki T, Giorgio I, Turco E, Müller W (2018) 3d-measurements of 3d-deformations of pantographic structures. Tech Mech 38(3):233–245

    Google Scholar 

  46. Ganzosch G, dell’Isola F, Turco E, Lekszycki T, Müller W (2016) Shearing tests applied to pantographic structures. Acta Polytechnica CTU Proceedings 7:1–6

    Google Scholar 

  47. Turco E, dell’Isola F, Rizzi N, Grygoruk R, Müller W, Liebold C (2016) Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence. Mech Res Commun 76:86–90

    Google Scholar 

  48. Barchiesi E, dell’Isola F, Laudato M, Placidi L, Seppecher P (2018) A 1d continuum model for beams with pantographic microstructure: Asymptotic micro-macro identification and numerical results. In: Advances in Mechanics of Microstructured Media and Structures, Springer, pp 43–74

  49. Rudra R (1987) A curve-fitting program to stress relaxation data. Can Agric Eng 29(2):209

    Google Scholar 

  50. Placidi L, Misra A, Barchiesi E (2018) Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin Mech Thermodyn 1–21. https://doi.org/10.1007/s00161-018-0693-z

  51. Placidi L, Misra A, Barchiesi E (2018) Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3):56

    MathSciNet  MATH  Google Scholar 

  52. Placidi L, Barchiesi E, Misra A (2018) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems 6(2):77–100

    MathSciNet  MATH  Google Scholar 

  53. Placidi L, Barchiesi E (2018) Energy approach to brittle fracture in strain-gradient modelling. Proc R Soc A 474(2210):20170878

    MathSciNet  MATH  Google Scholar 

  54. Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mechanics Research Communications

  55. Marmo F, Rosati L (2012) Analytical integration of elasto-plastic uniaxial constitutive laws over arbitrary sections. Int J Numer Methods Eng 91(9):990–1022

    MathSciNet  Google Scholar 

  56. D’Annibale F, Rosi G, Luongo A (2015) Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3):825– 839

    MathSciNet  MATH  Google Scholar 

  57. Marmo F, Rosati L (2013) The fiber-free approach in the evaluation of the tangent stiffness matrix for elastoplastic uniaxial constitutive laws. Int J Numer Methods Eng 94(9):868– 894

    MathSciNet  MATH  Google Scholar 

  58. Marmo F, Sessa S, Rosati L (2016) Analytical solution of the cerruti problem under linearly distributed horizontal loads over polygonal domains. J Elast 124(1):27–56

    MathSciNet  MATH  Google Scholar 

  59. Franciosi P (2018) A decomposition method for obtaining global mean green operators of inclusions patterns. application to parallel infinite beams in at least transversally isotropic media. Int J Solids Struct 147:1–19

    Google Scholar 

  60. Trotta S, Marmo F, Rosati L (2017) Evaluation of the eshelby tensor for polygonal inclusions. Compos Part B Eng 115:170–181

    Google Scholar 

  61. Franciosi P (2019) Multiple continuity of phases in composite materials: overall property estimates from a laminate system scheme. International Journal of Solids and Structures

  62. Franciosi P, Charles Y (2016) Effective property estimates for n-phase composites with from all to none co-continuous phases. Int J Solids Struct 96:110–125

    Google Scholar 

  63. Franciosi P, Charles Y (2016) Mean green operators and eshelby tensors for hemispherical inclusions and hemisphere interactions in spheres. application to bi-material spherical inclusions in isotropic spaces. Mech Res Commun 75:57–66

    Google Scholar 

  64. di Cosmo F, Laudato M, Spagnuolo M (2018) Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Generalized models and Non-classical Approaches in Complex Materials 1, Springer, pp 247–274

  65. Abbas IA, Abdalla AENN, Alzahrani FS, Spagnuolo M (2016) Wave propagation in a generalized thermoelastic plate using eigenvalue approach. J Therm Stress 39(11):1367–1377

    Google Scholar 

  66. Abd-alla AenN, Alshaikh F, Del Vescovo D, Spagnuolo M (2017) Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J Therm Stress 40(9):1079–1092

    Google Scholar 

  67. Laudato M, Manzari L, Barchiesi E, Di Cosmo F, Göransson P (2018) First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech Res Commun 94:125–127

    Google Scholar 

  68. Barchiesi E, Laudato M, Di Cosmo F (2018) Wave dispersion in non-linear pantographic beams. Mech Res Commun 94:128–132

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by the United States National Science Foundation grant CMMI-1727433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Misra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejadsadeghi, N., De Angelo, M., Drobnicki, R. et al. Parametric Experimentation on Pantographic Unit Cells Reveals Local Extremum Configuration. Exp Mech 59, 927–939 (2019). https://doi.org/10.1007/s11340-019-00515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00515-1

Keywords

Navigation