Skip to main content
Log in

Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction

Nanomaterials have widespread applications in several industrial sectors. ZnO nanoparticles (NPs) are among the most commonly used metal oxide NPs in personal care products, coating and paints. However, their potential toxicological impact on the environment is largely unexplored.

Materials and methods

The aim of this work was to evaluate whether ZnO nanoparticles exert toxic and genotoxic effects upon terrestrial organisms: plants (Lepidium sativum, Vicia faba), crustaceans (Heterocyipris incongruens), insects (Folsomia candida). To achieve this purpose, organisms pertaining to different trophic levels of the soil ecosystem have been exposed to ZnO NPs. In parallel, the selected soil organisms have been exposed to the same amount of Zn in its ionic form (Zn2+) and the effects have been compared.

Results

The most conspicuous effect, among the test battery organisms, was obtained with the ostracod H. incongruens, which was observed to be the most sensitive organism to ZnO NPs. The root elongation of L. sativum was also mainly affected by exposure to ZnO NPs with respect to ZnCl2, while collembolan reproduction test produced similar results for both Zn compounds. Slight genotoxic effects with V. faba micronucleus test were observed with both soils.

Conclusion

Nanostructured ZnO seems to exert a higher toxic effect in insoluble form towards different terrestrial organisms with respect to similar amounts of zinc in ionic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldaya MM, Lors C, Salmon S, Ponge JF (2006) Avoidance bio-assays may help to test the ecological significance of soil pollution. Environ Pollut 140:173–180

    Article  CAS  Google Scholar 

  • Aramba M, Bjeli S, Subakov G (1995) Acute toxicity of heavy-metals (copper, lead, zinc), phenol and sodium on Allium cepa, Lepidium sativum and Daphnia magna—comparative investigations and the practical applications. Water Res 29:497–503

    Article  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner M (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  • Blaise C (1998) Microbiotesting: an expanding field in aquatic toxicology. Ecotoxicol Environ Saf 40:115–119

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Peptides and hormesis. Crit Rev Toxicol 33:215–304

    Article  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  • Chial B, Persoone G (2002a) Cyst-based Toxicity Tests XIII—Development of a short chronic sediment toxicity test with the ostracod crustacean Heterocypris incongruens: methodology and precision. Environ Toxicol 17:528–532

    Article  CAS  Google Scholar 

  • Chial B, Persoone G (2002b) Cyst-Based Toxicity Tests XII—Development of a short chronic sediment toxicity test with the ostracod crustacean Heterocypris incongruens: selection of test parameters. Environ Toxicol 17:520–527

    Article  CAS  Google Scholar 

  • Choopun S, Tubtimtae A, Santhaveesuk T, Nilphai S, Wongrat E, Hongsith N (2009) Zinc oxide nanostructures for applications as ethanol sensors and dye sensitized solar cells. Appl Surf Sci 256:998–1002

    Article  CAS  Google Scholar 

  • EPA, United States Environmental Protection Agency 712-C-96-154 (1996) Ecological effects test guidelines. OPPTS 850.4200. Seed Germination/Root Elongation Toxicity Test

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a fresh water microalga; Pseudokirchneriella subcapitata: the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • ISO 11267 (1999) Soil quality-inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants

  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensor for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170

    Article  CAS  Google Scholar 

  • Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. CR Chim 6:999–1007

    Article  CAS  Google Scholar 

  • Kanaya N, Gill BS, Grover IS, Murin A, Osiecka R, Sandhu SS, Andersson HC (1994) Vicia faba chromosomal aberration assay. Mutat Res Fund Mol 310:231–247

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Liu CH, Lee CT, Tsai FC, Hsu SJ, Yang PM (2006) Gastroduodenal corrosive injury after oral zinc oxide. Ann Emerg Med 47:296

    Article  Google Scholar 

  • Lock K, Janssen C (2003) Comparative toxicity of a zinc salt, zinc powder and zinc oxide to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Chemosphere 53:851–856

    Article  CAS  Google Scholar 

  • Lock K, Desender K, Janssen CR (2001) Effects of metal contamination on the activity and diversity of carabid beetles in an ancient Pb–Zn mining area at Plombières (Belgium). Entomol Exp Appl 99:355–360

    Article  CAS  Google Scholar 

  • Moos PJ, Chung K, Woessner D, Honeggar M, Shane Cutler N, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23:733–739

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A, Quigg A, Santschi PH, Sigg L (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek E, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding the biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • OECD (2000) Guideline for testing chemical, Earthworm Reproduction Test (Eisenia foetida/andrei)

  • OECD (2003) Guideline for the testing of chemicals, proposal for updating guideline 208, Terrestrial Plant Test, Seedling Emergence and Seedling Growth Test

  • Paschke MW, Perry LG, Redente EF (2006) Zinc toxicity thresholds for reclamation for species. Water Air Soil Pollut 170:317–330

    Article  CAS  Google Scholar 

  • Posthuma L, van Straalen NM (1993) Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Physiol 106:11–38

    Google Scholar 

  • Rhee GY, Thomson PA (1992) Sorption of hydrophobic organic contaminants and trace metals on phytoplankton and implications for toxicity assessment. J Aquat Ecosyst Health 1:175–191

    Article  Google Scholar 

  • Roelofs F, Vogelsberger W (2004) Dissolution kinetics of synthetic amorphous silica in biological-like media and its theoretical description. J Phys Chem B 108:11308–11316

    Article  CAS  Google Scholar 

  • Ruffini Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Google Scholar 

  • Sandifer RD, Hopkin SP (1997) Effects of temperature on the relative toxicities of Cd, Cu, Pb, and Zn to Folsomia candida (Collembola). Ecotoxicol Environ Saf 37:125–130

    Article  CAS  Google Scholar 

  • Scicchitano DA, Pegg AE (1987) Inhibition of O6-alkylguanine-DNA-alkyltransferase by metals. Mutat Res 192:207–210

    Article  CAS  Google Scholar 

  • Smit CE, van Gestel CAM (1998) Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ Toxicol Chem 17:1132–1141

    CAS  Google Scholar 

  • van Straalen NM, Schobben JH, de Goede RG (1989) Population consequences of cadmium toxicity in soil microarthropods. Ecotoxicol Environ Saf 17:190–204

    Article  Google Scholar 

  • Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:829–858

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  • Yang SW, Becker FF, Cn JYH (1996) Inhibition of human DNA ligase I activity by zinc and cadmium and the fidelity of ligation. Environ Mol Mutagen 28:19–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Salluzzo for ICP-MS measurements and to A. De Girolamo Del Mauro and V. La Ferrara for their support in SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Manzo.

Additional information

Responsible editor: Vera Slaveykova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzo, S., Rocco, A., Carotenuto, R. et al. Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res 18, 756–763 (2011). https://doi.org/10.1007/s11356-010-0421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0421-0

Keywords

Navigation