Skip to main content
Log in

Microbial and physicochemical parameters associated with Legionella contamination in hot water recirculation systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hot water recirculation systems (HWRS) in hotels and nursing homes, which are common in countries such as Spain, have been related to outbreaks of legionellosis. To establish the relationships of microbial and physicochemical parameters, especially protozoa, with the occurrence of Legionella in HWRS, 231 samples from hotels and nursing homes were analysed for Legionella, protozoa, heterotrophic plate counts (HPC) at 22 and 37 °C, Pseudomonas, metals, temperature and others. Legionella pneumophila was the dominant species isolated, and 22 % were sg. 1. The sampling method became particularly important in order to define which factors were involved on the occurrence of Legionella. Results showed that the bacteria and the accompanying microbiota were more abundant in the first flush water whose temperature was lower. The bacteria occurred in those samples with high HPC and were inversely correlated with high temperatures. Multivariate regression showed that a concentration above 1 × 105 CFU/100 mL of HPC at 37 °C, Fe above 0.095 ppm and the presence of protozoa increased significantly the risk of Legionella colonization, while univariant regression showed that the presence of Cu above 0.76 ppm and temperature above 55 °C diminished it. Therefore, to reduce the risk associated with Legionella occurrence in HWRS these parameters should be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu Kwaik Y, Gao LY, Stone BJ, Venkataraman C, Harb OS (1998) Invasion of protozoa by Legionella pneumophila and its role in bacterial ecology and pathogenesis. Appl Environ Microbiol 64:3127–3133

    CAS  Google Scholar 

  • Alary M, Joly JR (1991) Risk factors for contamination of domestic hot water systems by legionellae. Appl Environ Microbiol 57:2360–2367

    CAS  Google Scholar 

  • Anand CM, Skinner AR, Malic A, Kurtz JB (1983) Interaction of L. pneumophilia and a free living amoeba (Acanthamoeba palestinensis). J Hyg (Lond) 91:167–178

    Article  CAS  Google Scholar 

  • Atlas RM (1999) Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol 1:283–293

    Article  CAS  Google Scholar 

  • Bargellini A, Marchesi I, Righi E, Ferrari A, Cencetti S, Borella P, Rovesti S (2011) Parameters predictive of Legionella contamination in hot water systems: association with trace elements and heterotrophic plate counts. Water Res 45:2315–2321

    Article  CAS  Google Scholar 

  • Boletín Oficial del Estado (2003a) Real Decreto 865/2003 por el que se establecen los criterios higiénico-sanitarios para la prevención y control de la legionelosis. BOE 171:28055

    Google Scholar 

  • Boletín Oficial del Estado (2003b) Real Decreto 140/2003 por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. BOE 45:7228–7245

    Google Scholar 

  • Borella P, Montagna MT, Romano-Spica V, Stampi S, Stancanelli G, Triassi M, Neglia R, Marchesi I, Fantuzzi G, Tato D, Napoli C, Quaranta G, Laurenti P, Leoni E, De Luca G, Ossi C, Moro M, Ribera D'Alcala G (2004) Legionella infection risk from domestic hot water. Emerg Infect Dis 10:457–464

    Article  Google Scholar 

  • Borella P, Guerrieri E, Marchesi I, Bondi M, Messi P (2005a) Water ecology of Legionella and protozoan: environmental and public health perspectives. Biotechnol Annu Rev 11:355–380

    Article  CAS  Google Scholar 

  • Borella P, Montagna MT, Stampi S, Stancanelli G, Romano-Spica V, Triassi M, Marchesi I, Bargellini A, Tato D, Napoli C, Zanetti F, Leoni E, Moro M, Scaltriti S, Ribera D'Alcala G, Santarpia R, Boccia S (2005b) Legionella contamination in hot water of Italian hotels. Appl Environ Microbiol 71:5805–5813

    Article  CAS  Google Scholar 

  • Buse HY, Ashbolt NJ (2011) Differential growth of Legionella pneumophila strains within a range of amoebae at various temperatures associated with in-premise plumbing. Lett Appl Microbiol 53:217–224

    Article  CAS  Google Scholar 

  • Cano Portero R, Martín Mesonero C, Pelaz Antolín C (2010) Brotes de legionelosis notificados a la Red Nacional de Vigilancia Epidemiológica. Años 1999 a 2009. Bol Epidemiol Sem 18(17):161–168

    Google Scholar 

  • Catalan V, Garcia F, Moreno C, Vila MJ, Apraiz D (1997) Detection of Legionella pneumophila in wastewater by nested polymerase chain reaction. Res Microbiol 148:71–78

    Article  CAS  Google Scholar 

  • CDC (2011) Increasing incidence of legionellosis in the United States, 2000–2009. MMRW 60:1083–1086

    Google Scholar 

  • Darelid J, Lofgren S, Malmvall BE (2002) Control of nosocomial Legionnaires' disease by keeping the circulating hot water temperature above 55 degrees C: experience from a 10-year surveillance programme in a district general hospital. J Hosp Infect 50:213–219

    Article  CAS  Google Scholar 

  • Declerck P, Behets J, van Hoef V, Ollevier F (2007) Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167

    Google Scholar 

  • Dennis PJ, Green D, Jones BP (1984) A note on the temperature tolerance of Legionella. J Appl Bacteriol 56:349–350

    Article  CAS  Google Scholar 

  • Devos L, Clymans K, Boon N, Verstraete W (2005) Evaluation of nested PCR assays for the detection of Legionella pneumophila in a wide range of aquatic samples. J Appl Microbiol 99:916–925

    Article  CAS  Google Scholar 

  • Edagawa A, Kimura A, Doi H, Tanaka H, Tomioka K, Sakabe K, Nakajima C, Suzuki Y (2008) Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J Appl Microbiol 105:2104–2114

    Article  CAS  Google Scholar 

  • Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15:506–526

    Article  Google Scholar 

  • Garcia MT, Baladron B, Gil V, Tarancon ML, Vilasau A, Ibanez A, Elola C, Pelaz C (2008) Persistence of chlorine-sensitive Legionella pneumophila in hyperchlorinated installations. J Appl Microbiol 105:837–847

    Article  CAS  Google Scholar 

  • Groothuis DG, Veenendaal HR, Dijkstra HL (1985) Influence of temperature on the number of Legionella pneumophila in hot water systems. J Appl Bacteriol 59:529–536

    Article  CAS  Google Scholar 

  • Habicht W, Muller HE (1988) Occurrence and parameters of frequency of Legionella in warm water systems of hospitals and hotels in Lower Saxony. Zentralbl Bakteriol Mikrobiol Hyg B 186:79–88

    CAS  Google Scholar 

  • Henke M, Seidel KM (1986) Association between Legionella pneumophila and amoebae in water. Isr J Med Sci 22:690–695

    Google Scholar 

  • Hruba L (2009) The colonization of hot water systems by Legionella. Ann Agric Environ Med 16:115–119

    Google Scholar 

  • International Organization for Standardization (1998) Water quality-detection and enumeration of Legionella. ISO 11731:1998

  • International Organization for Standardization (2005) Water Quality—General guidance on the enumeration of micro-organisms by culture. ISO 8199:2005

  • James BW, Mauchline WS, Dennis PJ, Keevil CW, Wait R (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–827

    CAS  Google Scholar 

  • Jonas D, Rosenbaum A, Weyrich S, Bhakdi S (1995) Enzyme-linked immunoassay for detection of PCR-amplified DNA of legionellae in bronchoalveolar fluid. J Clin Microbiol 33:1247–1252

    CAS  Google Scholar 

  • Joseph CA, Ricketts KD, on behalf of the European Working Group for Legionella Infections (2010) Legionnaire's disease in Europe 2007–2008. Euro Surveill 15(8):19493

    CAS  Google Scholar 

  • Lasheras A, Boulestreau H, Rogues A, Ohayon-Courtes C, Labadie J, Gachie J (2006) Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am J Infect Control 34:520–525

    Article  Google Scholar 

  • Lee TC, Stout JE, Yu VL (1988) Factors predisposing to Legionella pneumophila colonization in residential water systems. Arch Environ Health 43:59–62

    Article  CAS  Google Scholar 

  • Leoni E, De Luca G, Legnani PP, Sacchetti R, Stampi S, Zanetti F (2005) Legionella waterline colonization: detection of Legionella species in domestic, hotel and hospital hot water systems. J Appl Microbiol 98:373–379

    Article  CAS  Google Scholar 

  • López-Ochoterena E, Serrano-Limón G (1991) Manual de técnicas protozoológicas. Universidad Autónoma de Tlaxcala: 80

  • Marciano-Cabral F, Jamerson M, Kaneshiro ES (2010) Free-living amoebae, Legionella and Mycobacterium in tap water supplied by a municipal drinking water utility in the USA. J Water Health 8:71–82

    Article  CAS  Google Scholar 

  • Mathys W, Stanke J, Harmuth M, Junge-Mathys E (2008) Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating. Int J Hyg Environ Health 211:179–185

    Article  Google Scholar 

  • McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR (1977) Legionnaires' disease. N Engl J Med 297:1197–1203

    Article  CAS  Google Scholar 

  • Mouchtouri V, Velonakis E, Tsakalof A, Kapoula C, Goutziana G, Vatopoulos A, Kremastinou J, Hadjichristodoulou C (2007) Risk factors for contamination of hotel water distribution systems by Legionella species. Appl Environ Microbiol 73:1489–1492

    Article  CAS  Google Scholar 

  • Ohno A, Kato N, Yamada K, Yamaguchi K (2003) Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. Appl Environ Microbiol 69:2540–2547

    Article  CAS  Google Scholar 

  • Paszko-Kolva C, Yamamoto H, Shahamat M, Sawyer TK, Morris G, Colwell RR (1991) Isolation of amoebae and Pseudomonas and Legionella spp. from eyewash stations. Appl Environ Microbiol 57:163–167

    CAS  Google Scholar 

  • Plouffe JF, Webster LR, Hackman B (1983) Relationship between colonization of hospital building with Legionella pneumophila and hot water temperatures. Appl Environ Microbiol 46:769–770

    CAS  Google Scholar 

  • Reeves MW, Pine L, Hutner SH, George JR, Harrell WK (1981) Metal requirements of Legionella pneumophila. J Clin Microbiol 13:688–695

    CAS  Google Scholar 

  • Ribas F, Perramon J, Terradillos A, Frias J, Lucena F (2000) The Pseudomonas group as an indicator of potential regrowth in water distribution systems. J Appl Microbiol 88:704–710

    Article  CAS  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60:1585–1592

    CAS  Google Scholar 

  • Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 64:1822–1824

    Google Scholar 

  • Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183

    Article  CAS  Google Scholar 

  • Serrano-Suárez A (2009) Relación de Legionella spp. con parámetros microbiológicos y fisicoquímicos en aguas. Dissertation or Thesis, Universitat de Barcelona

  • States SJ, Conley LF, Ceraso M, Stephenson TE, Wolford RS, Wadowsky RM, McNamara AM, Yee RB (1985) Effects of metals on Legionella pneumophila growth in drinking water plumbing systems. Appl Environ Microbiol 50:1149–1154

    CAS  Google Scholar 

  • Taylor M, Ross K, Bentham R (2009) Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol 58:538–547

    Article  Google Scholar 

  • Temmerman R, Vervaeren H, Noseda B, Boon N, Verstraete W (2006) Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328

    Article  CAS  Google Scholar 

  • Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438

    Article  CAS  Google Scholar 

  • Valster RM, Wullings BA, van den Berg R, van der Kooij D (2011) Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl Environ Microbiol 77:7321–7328

    Article  CAS  Google Scholar 

  • van der Kooij D, Veenendaal HR, Scheffer WJ (2005) Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Res 39:2789–2798

    Article  Google Scholar 

  • Van Eys GJ, Gravekamp C, Gerritsen MJ, Quint W, Cornelissen MT, Schegget JT, Terpstra WJ (1989) Detection of leptospires in urine by polymerase chain reaction. J Clin Microbiol 27:2258–2262

    Google Scholar 

  • Wadowsky RM, Yee RB, Mezmar L, Wing EJ, Dowling JN (1982) Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures. Appl Environ Microbiol 43:1104–1110

    CAS  Google Scholar 

  • Wadowsky RM, Butler LJ, Cook MK, Verma SM, Paul MA, Fields BS, Keleti G, Sykora JL, Yee RB (1988) Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors. Appl Environ Microbiol 54:2677–2682

    CAS  Google Scholar 

  • Wullings BA, Bakker G, van der Kooij D (2011) Concentration and diversity of uncultured Legionella spp. in two unchlorinated drinking water supplies with different concentrations of natural organic matter. Appl Environ Microbiol 77:634–641

    Article  CAS  Google Scholar 

  • Yamamoto H, Sugiura M, Kusunoki S, Ezaki T, Ikedo M, Yabuuchi E (1992) Factors stimulating propagation of legionellae in cooling tower water. Appl Environ Microbiol 58:1394–1397

    CAS  Google Scholar 

  • Yaradou DF, Raze D, Ginevra C, Ader F, Doleans-Jordheim A, Vandenesch F, Menozzi FD, Etienne J, Jarraud S (2007) Zinc-dependent cytoadherence of Legionella pneumophila to human alveolar epithelial cells in vitro. Microb Pathog 43:234–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Spanish Ministry of Education and Science (MEC-CGL 2005–01465) and the network Xarxa de Referència en Biotecnologia (XRB) and l’Institut de laigua (Universitat de Barcelona). The authors also thank the Serveis Cientificotècnics of the University of Barcelona for their contribution and to Dr. Jose Antonio Domínguez Benítez for his contributions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Araujo.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano-Suárez, A., Dellundé, J., Salvadó, H. et al. Microbial and physicochemical parameters associated with Legionella contamination in hot water recirculation systems. Environ Sci Pollut Res 20, 5534–5544 (2013). https://doi.org/10.1007/s11356-013-1557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1557-5

Keywords

Navigation