Skip to main content
Log in

Treatment of wastewater by electrocoagulation: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The electrocoagulation (EC) process is an electrochemical means of introducing coagulants and removing suspended solids, colloidal material, and metals, as well as other dissolved solids from water and wastewaters. The EC process has been successfully employed in removing pollutants, pesticides, and radionuclides. This process also removes harmful microorganisms. More often during EC operation, direct current is applied and electrode plates are sacrificed (dissolved into solution). The dissolution causes an increased metal concentration in the solution that finally precipitates as oxide precipitates. Due to improved process design and material of construction, the EC process is being widely accepted over other physicochemical processes. Presently, this process has gained attention due to its ability to treat large volume and for its low cost. The aim of this study is to review the mechanism, affecting factors, process, and application of the electrocoagulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Gawad SA, Baraka AM, Omran KA, Mokhtar MM (2012) Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes. Int J Electrochem Sci 7:6654–6665

    CAS  Google Scholar 

  • Akbal F, Camc S (2011) Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 269:214–222

    CAS  Google Scholar 

  • Al Aji B, Yavuz Y, Koparal AS (2012) Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep Purif Technol 86:248–254

    CAS  Google Scholar 

  • Aoudj S, Khelifa A, Drouiche N, Hecini M, Hamitouche H (2010) Electrocoagulation process applied to wastewater containing dyes from textile industry. Chem Eng Process 49:1176–1182

    CAS  Google Scholar 

  • Asselin M, Drogui P, Brar SK, Benmoussa H, Blais J (2008a) Organics removal in oily bilgewater by electrocoagulation process. J Hazard Mater 151:446–455

    CAS  Google Scholar 

  • Asselin M, Drogui P, Benmoussa H, Blais J, (2008) Effectiveness of electrocoagulation process in removing organic compounds from slaughter house wastewater using monopolar and bipolar electrolytic cells. Chemosphere, 1727–173

  • Asselin M, Drogui P, Benmoussa H, Blais J (2008c) Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells. Chemosphere 72:1727–1733

    CAS  Google Scholar 

  • Augustin MB, Waya SP, Phutdhawong W (2008) Electrocoagulation of palm oil mill effluent. Int J Environ Res Public Health 5:177–180

    Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459

    CAS  Google Scholar 

  • Baklan VY, Kolesnikova IP (1996) Influence of electrode material on the electrocoagulation. J Aerosol Sci 27(1):209–210

    Google Scholar 

  • Balasubramanian N, Madhavan K (2001) Arsenic removal from industrial effluent through electrocoagulation. Chem Eng Technol 24:519–521

    CAS  Google Scholar 

  • Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C (2009) Removal of arsenic from aqueous solution using electrocoagulation. J Hazard Mater 167:966–969

    CAS  Google Scholar 

  • Barrera-Díaz C, Bilyeu B, Roa-Morales G, Balderas-Hernandez P (2008) A comparison of iron and aluminium electrodes in hydrogen peroxide-assisted electrocoagulation of organic pollutants. Environ Eng Sci 25:529–538

    Google Scholar 

  • Bayramoglu M, Eyvaz M, Kobya M (2007) Treatment of the textile wastewater by electrocoagulation. Chem Eng J 128:155–161

    CAS  Google Scholar 

  • Bazrafshan E, Mahvi AH, Naseri S, Mesdaghinia AR (2008) Performance evaluation of electrocoagulation process for removal of chromium (VI) from synthetic chromium solutions using iron and aluminum electrodes. Turk J Eng Environ Sci 32:59–66

    CAS  Google Scholar 

  • Beck EC, Giannini AP, Ramirez ER (1974) Electrocoagulation clarifies food wastewater. Food Technol 22:18–19

    Google Scholar 

  • Bejankiwar RS (2002) Electrochemical treatment of cigarette industry wastewater: feasibility study. Water Resour 36:4386–4390

    CAS  Google Scholar 

  • Belkacem M, Khodir M, Abdelkrim S (2008) Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 228:245–254

    CAS  Google Scholar 

  • Bell J, Plumb JJ, Buckley CA, Stuckey DC (2000) Treatment and decolorization of dyes in an anaerobic baffled reactor. J Environ Eng ASCE 126:1026–1032

    CAS  Google Scholar 

  • Bhatnagar A, Sillanpaa M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment: a review. Chem Eng J 157:277–296

    CAS  Google Scholar 

  • Bing-Fang S, (2008) Study on electrocoagulation to treat laboratory wastewater. J Water Resour Eng 6

  • Blanco-Galvez J, Fernandez-Ibanez P, Malato-Rodriguez S (2007) Photocatalytic detoxification and disinfection of water: recent overview. J Sol Energy Eng 129:4–15

    CAS  Google Scholar 

  • Bolto B, Dixon D, Eldridge R, King S, Linge K (2002) Removal of natural organic matter by ion exchange. Water Resour 36:5057–5065

    CAS  Google Scholar 

  • Bonilla CF (1947) Possibilities of the electronic coagulator for water treatment. Water Sew 85:44–45

    Google Scholar 

  • Bukhari AA (2008) Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater. Bioresour Technol 99:914–921

    CAS  Google Scholar 

  • Burns SE, Yiacoumi S, Tsouris C (1997) Microbubble generation for environmental and industrial separations. Sep Purif Technol 11:221–232

    CAS  Google Scholar 

  • Camp TR (1946) Sedimentation and the design of settling tanks. Trans Am Soc Civ Eng 895–936

  • Canizares P, Martinez F, Lobato J, Rodrigo M (2007) Break-up of oil-in-water emulsions by electrochemical techniques. J Hazard Mater 145:233–240

    CAS  Google Scholar 

  • Canizares P, Jimenez C, Martínez F, Rodrigo MA, Saez C (2009) The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. J Hazard Mater 163:158–164

    CAS  Google Scholar 

  • Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J Hazard Mater 167:268–274

    CAS  Google Scholar 

  • Chen G, Hung Y (2007)Electrochemical wastewater treatment processes. Wang L, Hung Y, Shammas N (eds) From Handbook of environmental engineering, volume 5: advanced physicochemical treatment technologies, chapter 2, Humana Press

  • Chen JP, Chang SY, Hung Y (2005) Physicochemical treatment process. Handb Environ Eng 3:359–378

    CAS  Google Scholar 

  • Chen G, Chen X, Yue PL (2008) Electrocoagulation and electroflotation of restaurant wastewater. J Environ Eng 126:858–863

    Google Scholar 

  • Chopra AK, Sharma AK, Kumar V (2011) Overview of electrolytic treatment: an alternative technology for purification of wastewater. Arch Appl Sci Res 3(5):191–206

    Google Scholar 

  • Chou W, Wang C, Huang K (2009) Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption. J Hazard Mater 167:467–474

    CAS  Google Scholar 

  • Coe HS, Clevenger GH (1916) Methods of determining the capacities of slime settling tanks. Trans Am Inst Min Eng 55:356–383

    Google Scholar 

  • Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862

    Google Scholar 

  • Comninellis C, Chen G (2010) Electrochemistry for the environment. Springer, New York, pp 245–262

    Google Scholar 

  • Deshpande AM, Satyanarayan S (2011) Toxicity evaluation of through fish bioassay raw bulk drug industry wastewater after electrochemical treatment. Iran J Environ Health Sci Eng 8:4

    Google Scholar 

  • Diya’uddeen BH, Daud WMAW, Abdul Aziz A (2011) Treatment technologies for petroleum refinery effluents: a review. Process Saf Environ Prot 89:95–105

    Google Scholar 

  • Do JS, Chen ML (1994) Decolorization of dye-containing solutions by electrocoagulation. J Appl Electrochem 24(8):785–790

    CAS  Google Scholar 

  • Elmore FE (1905) A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore, Br. Patent (13), 578

  • El-Naas MH, Al-Zuhair S, Al-Lobaney A, Makhlouf S (2009) Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J Environ Manage 91:180–185

    CAS  Google Scholar 

  • Escobar C, Soto-Salazar C, Toral MI (2006) Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater. J Environ Manage 81:384–391

    CAS  Google Scholar 

  • Espinoza-Quiñones FR, Fornari MMT, Módenes AN, Palácio SM, daSilva Jr FG, Szymanski N, Kroumov AD, Trigueros DEG (2009) Pollutant removal from tannery effluent by electrocoagulation. Chem Eng J 151:59–65

    Google Scholar 

  • Esplugas S, Gimenez J, Contreras S, Pascual E, Rodriguez MM (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    CAS  Google Scholar 

  • Essadki AH, Bennajah M, Gourich B, Vial C, Azzi M, Delmas H (2008) Electrocoagulation/electroflotation in an external-loop airlift reactor: application to the decolorization of textile dye wastewater: a case study. Chem Eng Process 47:1211–1223

    CAS  Google Scholar 

  • Eyvaz M, Kirlaroglu M, Aktas TS, Yuksel E (2009) The effects of alternating current electrocoagulation on dye removal from aqueous solutions. Chem Eng J 153:16–22

    CAS  Google Scholar 

  • Faust SD, Aly OM (1987) Adsorption process for water treatment. Butterworth’s Publishers, Stoneham

    Google Scholar 

  • Ghosh D, Medhi CR, Purkait MK (2008) Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere 73:1393–1400

    CAS  Google Scholar 

  • Golder AK, Samanta AN, Ray S (2006) Removal of trivalent chromium by electrocoagulation. Sep Purif Technol 53:33–41

    Google Scholar 

  • Golder AK, Samanta AN, Ray S (2007) Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations. J Hazard Mater 141:653–661

    CAS  Google Scholar 

  • Guohua C (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41

    Google Scholar 

  • Hanay O, Hasar H (2011) Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes. J Hazard Mater 189:572–576

    CAS  Google Scholar 

  • Hansen HK, Nunez P, Jil C (2008) Removal of arsenic from wastewaters by airlift electrocoagulation. Part 1: batch reactor experiments. Sep Sci Technol 43:212

    CAS  Google Scholar 

  • Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–65

    CAS  Google Scholar 

  • Ho CC, Chan CY (1986) The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent. Water Resour 20(12):1523–1527

    CAS  Google Scholar 

  • Holt PK, Barton GW, Mitchell C (1999) Electrocoagulation as a wastewater treatment. The 3rd Annual Australian Environment Engineering Research Event, 23–26 Nov., Castlemaine, Victoria

  • Holt PK, Barton GW, Wark M, Mitchell AA (2002) A quantitative comparison between chemical dosing and electrocoagulation. Colloids Surf A Physicochem Eng Asp 211:233–248

    CAS  Google Scholar 

  • Holt P, Barton G, Mitchell C (2005) The future for electrocoagulation as a localized water treatment technology. Chemosphere 59:355–367

    CAS  Google Scholar 

  • Hulser P, Kruger UA, Beck F (1996) The cathodic corrosion of aluminium during the electro deposition of paint: electrochemical measurements. Corros Sci 38(1):47–57

    Google Scholar 

  • Illhan F, Kurt U, Apaydin O, Gonullu MT (2008) Treatment of leachate by electrocoagulation using aluminum and iron electrodes. Environ Eng Sci 154:381–389

    Google Scholar 

  • Jiang JQ, Graham N, Andre C, Kelsall GH, Brandon N (2002) Laboratory study of electro-coagulation-flotation for water treatment. Water Res 36(16):4046–4078

    Google Scholar 

  • Karamisheva RD, Islam MA (2005) Development of a new model for batch sedimentation and application to secondary settling tank design. Water Environ Res 77(7):3066–3073

    CAS  Google Scholar 

  • Katal R, Pahlavanzadeh H (2011) Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: application to the treatment of paper mill wastewater. Desalination 265:199–205

    CAS  Google Scholar 

  • Khansorthong S, Hunsom M (2009) Remediation of wastewater from pulp and paper mill industry by the electrochemical technique. Chem Eng J 151:228–234

    CAS  Google Scholar 

  • Khristoskova S (1984) Possibility of purification and decoloring wastewater from the yeast industry by electrocoagulation. Nauchni Tr-Plovdski University (Bulg) 22:177–185

    CAS  Google Scholar 

  • Kongjao S, Damronglerd S, Hunsom M (2008) Simultaneous removal of organic and inorganic pollutants in tannery wastewater using electrocoagulation technique. Korean J Chem Eng 25:703–709

    CAS  Google Scholar 

  • Koparal AS, Ogutveren UB (2004) Removal of nitrate from water by electroreduction and electrocoagulation. J Hazard Mater 89:83–94

    Google Scholar 

  • Kotz R, Stucki S, Ceacer B (1991) Electrochemical wastewater treatment using high overvoltage anode. Part I: physical and electrochemical properties of SnO2 anodes. J Appl Electrochem 21:14–21

    Google Scholar 

  • Kul'skii LA, Strokach PP, Slipchenko VA, Saigak EI (1978) Water purification by electrocoagulation. Budivel' nik, Kiev

    Google Scholar 

  • Kumar M, Ponselvan FIA, Malviya JR, Srivastava VC, Mall ID (2009) Treatment of bio-digester effluent by electrocoagulation using iron electrodes. J Hazard Mater 165:345–352

    CAS  Google Scholar 

  • Lai CL, Lin SH (2004) Treatment of chemical mechanical polishing wastewater by electrocoagulation: system performances and sludge settling characteristics. Chemosphere 54:235–242

    CAS  Google Scholar 

  • LaPara TM, Konopka A, Nakatsu CH, Alleman JE (2000) Thermophilic aerobic wastewater treatment in continuous-flow bioreactors. J Environ Eng ASCE 126:739–744

    CAS  Google Scholar 

  • Levenspiel O (1999) Chemical reaction engineering. John Wiley and Sons, New York

    Google Scholar 

  • Lim SH, Luo J, Zhong Z, Ji W, Lin J (2005) Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg Chem 44:4124–4126

    CAS  Google Scholar 

  • Lin SH, Juang RS (2002) Removal of free and chelated Cu(II) ions from water by a nondispersive solvent extraction process. Water Res 36:3611–3619

    CAS  Google Scholar 

  • Lin SH, Shyu CT, Sun MC (1998) Saline wastewater treatment by electrochemical method. Water Res 32:1059–1066

    CAS  Google Scholar 

  • Linares-Hernandez I, Barrera-Diaz C, Pablo C, Rojas J, Roa-Morales GR, Urena F (2009) Industrial wastewater treatment by electrocoagulation–direct anodic oxidation system. ECS Trans 20:301–311

    CAS  Google Scholar 

  • Liu H, Zhao X, Qu J, (2010) Electrocoagulation in water treatment. Comninellis, C and Chen, G. (eds) From: Electrochemistry for the environment, Chapter 10, Springer

  • MaCabe, Smith WL, Harriot JC (2001) Process unit operations of chemical engineering, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Mahesh S, Prasad B, Mall ID, Mishra IM (2006a) Electrochemical degradation of pulp and paper mill wastewater. Part 1. COD and color removal. Ind Eng Chem Res 45(8):2830–2839

    CAS  Google Scholar 

  • Mahesh S, Prasad B, Mall ID, Mishra IM (2006b) Electrochemical degradation of pulp and paper mill wastewater. Part 2. Characterization and analysis of sludge. Ind Eng Chem Res 45(16):5766–5774

    CAS  Google Scholar 

  • Mahvi AH, Mansoorian HJ, Rajabizadeh A (2009) Performance evaluation of electrocoagulation process for removal of sulphate from aqueous environments using plate alumnium electrodes. World Appl Sci J 7:1526–1533

    CAS  Google Scholar 

  • Malakootian M, Yousefi N (2009) The efficiency of electrocoagulation process using aluminum electrodes in removal of hardness from water. Iran J Environ Health Sci Eng 6(2):131–136

    CAS  Google Scholar 

  • Malkin VP (2003) Electrolytic effluent treatment. Chem Pet Eng 39:1–2

    Google Scholar 

  • Mameri N, Yeddou AR (1998) Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes. Water Res 32(5):1604–1612

    CAS  Google Scholar 

  • Manisankar P, Viswanathan S, Rani C (2003) Electrochemical treatment of distillery effluent using catalytic anodes. Green Chem 5:270–274

    CAS  Google Scholar 

  • Martínez-Delgadillo SA, Morales-Mora MA, Barcelo-Quintal ID (2010) Electrocoagulation treatment to remove pollutants from petroleum refinery wastewater. Sustain Environ Res 20(4):227–231

    Google Scholar 

  • Matteson MJ, Dobson RL, Glenn RW, Kukunoor NS, Waits WH, Clayfield EJ (1995) Electrocoagulation and separation of aqueous suspensions of ultrafine particles. Colloids Surf A Physicochem Eng Asp 104:101–109

    CAS  Google Scholar 

  • Mavros P, Danilidou AC, Lazaridis NK, Stergiou L (1994) Color removal from aqueous solutions. Part I. Flotation Environ Technol 15:601–616

    CAS  Google Scholar 

  • Merzouk B, Madani K, Sekki A (2010) Using electrocoagulation–electroflotation technology to treat synthetic solution and textile wastewater, two case studies. Desalination 250:573–577

    CAS  Google Scholar 

  • Mickley M (2009) Treatment of concentrate, U.S. Department of the Interior Bureau of Reclamation, Denver Federal Center May

  • Moghadam AM, Amiri H (2010) Investigation of TOC removal from industrial wastewaters using electrocoagulation process. Iran J Health Environ 3:185–194

    Google Scholar 

  • Mollah Mohammad YA, Paul M, Jewel AGG, Kesmez M, Parga J, David LC (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114(1–3):199–210

    CAS  Google Scholar 

  • Mouedhen G, Feki M, Wery MDP, Ayedi HF (2008) Behavior of aluminum electrodes in electrocoagulation process. J Hazard Mater 150:124–135

    CAS  Google Scholar 

  • Nanseu-Njiki CP, Tchamango SR, Ngom PC, Darchen A, Ngameni E (2009) Mercury (II) removal from water by electrocoagulation using aluminium. J Hazard Mater 168:1430–1436

    CAS  Google Scholar 

  • Naohide T, Yukio M, Masataka Y, Shin-Ichi W, Sahori T, Zyun S, Kunishige H, Hiroyasu T (1998) Application of solid polymer electrolyte for treatment of water coloured by dyestuffs, treatment of orange II. J Jpn Soc Water Environ 21:47–50

    Google Scholar 

  • Narayanan NV, Ganesam M (2009) Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. J Hazard Mater 161:575–580

    CAS  Google Scholar 

  • Nasrullah M, Singh L, Wahida ZA (2012) Treatment of sewage by electrocoagulation and the effect of high current density. Energy Environ Eng J 1:1

    Google Scholar 

  • Nikolaev NV, Kozlovskii AS, Utkin II (1982) Treating natural waters in small water systems by filtration with electrocoagulation. Sov J Water Chem Technol 4(3):244–247

    CAS  Google Scholar 

  • Nouri J, Mahvi AH, Bazrafshan E (2010a) Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes. Int J Environ Res 4:201–208

    CAS  Google Scholar 

  • Nouri JL, Mahvi AH, Bazrafshan E (2010b) Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes. Int J Environ Res 4(2):201–208

    CAS  Google Scholar 

  • Novikova SP, Shkorbatova TL, Sokol EY, (1982), Purification of effluents from the production of synthetic detergents by electrocoagulation. Sov J Water Chem Technol 4(4):353–357

    Google Scholar 

  • Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalyzed destruction of water contaminants. Environ Sci Tech 25:1522–1529

    CAS  Google Scholar 

  • Osipenko VD, Pogorelyi PI (1977) Electrocoagulation neutralization of chromium containing effluent. Metallurgist 21(9–10):44–45

    Google Scholar 

  • Pala A, Tokat E (2002) Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res 36:2920–2925

    CAS  Google Scholar 

  • Panizza M, Michaud PA, Cerisola G, Comninellis C (2001) Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area. Electrochem Commun 3:336–339

    CAS  Google Scholar 

  • Pearse MJ (2002) Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry. Miner Eng 16:103–108

    Google Scholar 

  • Petsriprasit C, Namboonmee J, Hunsom M (2010) Application of the electrocoagulation technique for treating heavy metals containing wastewater from the pickling process of a billet plant. Korean J Chem Eng 27:854–861

    CAS  Google Scholar 

  • Phalakornkule C, Sukkasem P, Mutchimsattha C (2010) Hydrogen recovery from the electrocoagulation treatment of dye-containing wastewater. Int J Hydrog Energy 35:10934–10943

    CAS  Google Scholar 

  • Pirkarami A, Olya ME, Tabibian S (2013) Treatment of colored and real industrial effluents through electrocoagulation using solar energy. J Environ Sci Health A Toxic/Hazard Subst Environm Eng 48(10):1243–1252

    CAS  Google Scholar 

  • Piya-Areetham P, Shenchunthichai K, Hunsom M (2006) Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode. Water Res 40(28):57–2864

    Google Scholar 

  • Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) On the performance of Ti/SiO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J Appl Electrochem 29:147–151

    CAS  Google Scholar 

  • Pouet MF, Grasmick A (1995) Urban wastewater treatment by electrocoagulation and flotation. Water Sci Technol 31:275–283

    CAS  Google Scholar 

  • Prajapati AK, Chaudhari PK (2013) Electrochemical treatment of rice grain based distillery effluent: chemical oxygen demand and color removal, Environmental Technology (available online)

  • Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution abatement. Academic, San Diego

    Google Scholar 

  • Raju GB, Karuppiah MT, Latha SS, Parvathy S, Prabhakar S (2008) Treatment of wastewater from synthetic textile industry by electrocoagulation–electrooxidation. Chem Eng J 144:51–58

    CAS  Google Scholar 

  • Rao TN, Fujishima A, Tryk DA, in Bard AJ, Stratmann M, Licht S, (Eds) (2002) Encyclopedia of electrochemistry, in: Semiconductor electrodes and photoelectrochemistry, Weinheim, 6

  • Rayman S, White RE (2009) Simulation of reduction of Cr(VI) by Fe(II) produced electrochemically in a parallel plate electrochemical reactor. J Electrochem Soc 156:96–104

    Google Scholar 

  • Renk RR (1998) Electrocoagulation of tar sand and oil shale wastewater. Energy Program 8:205–208

    Google Scholar 

  • Rodrigo MA, Cañizares P, Buitrón C, Saez C (2010) Electrochemical technologies for the regeneration of urban wastewaters. Electrochim Acta 55:8160–8164

    CAS  Google Scholar 

  • Rodriguez J, Stopić S, Krause G, Friedrich B (2007) Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment. Environ Sci Pollut Res 14(7):477–482

    CAS  Google Scholar 

  • Sasson MB, Calmano W, Adin A (2009) Iron-oxidation processes in an electro-flocculation (electrocoagulation) cell. J Hazard Mater 171:704–709

    CAS  Google Scholar 

  • Scott K (1995) Electrochemical processes for clean technology. Royal Society of Chemistry, Cambridge UK

    Google Scholar 

  • Sengil IA, Kulaç S, Ozacar M (2009) Treatment of tannery liming drum wastewater. J Hazard Mater 167:940–946

    CAS  Google Scholar 

  • Shafaei A, Rezayee M, Arami M, Nikazar M (2010) Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination 260:23–28

    CAS  Google Scholar 

  • Shafaei A, Pajootan E, Nikazar M, Arami M (2011) Removal of Co(II) from aqueous solution by electrocoagulation process using aluminum electrodes. Desalination 279:121–126

    CAS  Google Scholar 

  • Shen H, Wang YT (1994) Biological reduction of chromium by E. coli. J Environ Eng ASCE 120:560–571

    CAS  Google Scholar 

  • Shen F, Gao P, Chen X, Chen G (2003) Electrochemical removal of fluoride ions from industrial wastewater. Chem Eng Sci 58:987–993

    CAS  Google Scholar 

  • Stuart FE (1946) Electronic water purification progress report on the electronic coagulator—a new device which gives promise of unusually speedy and effective results. Water Sew 84:24–26

    CAS  Google Scholar 

  • Szpyrkowicz L, Naumczyk J, Zilio-Grandi F (1995a) Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes. Water Res 29:517–524

    CAS  Google Scholar 

  • Szpyrkowicz L, Naumczyk J, Zilio-Grandi F (1995b) Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/ Pt/Ir electrode. Water Res 29(2):517–524

    CAS  Google Scholar 

  • Tan BH, Teng TT, Omar AKM (2003) Removal of dyes and industrial dye wastes by magnesium chloride. Water Resour 34:597–601

    CAS  Google Scholar 

  • Tezcan Un U, Koparal AS, Bakir Ogutveren U (2009a) Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. J Hazard Mater 164:580–586

    Google Scholar 

  • Tezcan Un U, Koparal AS, Bakir Ogutveren U (2009b) Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. J Environ Manage 90:428–433

    Google Scholar 

  • Thella K, Verma B, Srivastava VC, Srivastava KK (2008) Electrocoagulation study for the removal of arsenic and chromium from aqueous solution. J Environ Sci Health A 43:554–562

    CAS  Google Scholar 

  • Valero D, Ortiz JM, Expósito E, Montiel V, Aldaz A (2008) Electrocoagulation of a synthetic textile effluent powered by photovoltaic energy without batteries: Direct connection behaviour. Sol Energy Mater Sol Cells 92:291–997

    CAS  Google Scholar 

  • Valero D, Ortiz JM, Garcia V, Exposito E, Montiel V, Aldaz A (2011) Electrocoagulation of wastewater from almond industry. Chemosphere 84(9):1290–1295

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Jayaraj J, Sozhan G (2009) Remediation of phosphate contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes. J Hazard Mater 164:1480–1486

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2010) Studies on the removal of arsenate by electrochemical coagulation using aluminum alloy anode. CLEAN Soil Air Water 38:506–515

    CAS  Google Scholar 

  • Vasudevan S, Kannan BS, Lakshmi J, Mohanraj S, Sozhan G (2011) Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. J Chem Technol Biotechnol 86:428–436

    CAS  Google Scholar 

  • Vik E, Carlson D, Eikun A, Gjessing E (1984) Electrocoagulation of potable water. Water Res 18:1355–1360

    CAS  Google Scholar 

  • Vlysside AG, Israilides CJ (1998) Textile dye and finishing wastewater using a Pt/Ti electrode. J Environ Sci Health 33(5):847–862

    Google Scholar 

  • Vlyssides AG, Loizidou M, Karlis PK, Zorpas AA, Papaioannou D (1999) Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode. J Hazard Mater B70(1–2):41–52

    Google Scholar 

  • Vlyssides AG, Karlis PK, Rori N, Zorpas AA (2002) Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. J Hazard Mater B95(1–2):215–226

    Google Scholar 

  • Walsh F, Mills G (1994) Electrochemical methods for pollution control. Chem Technol Eur 1(1):13–18

    CAS  Google Scholar 

  • Wang J-Y, Huang X-J, Kao JMC, Stabnikova O (2007) Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. J Hazard Mater 144(1–2):292–299.

    Google Scholar 

  • Wang C, Chou W (2009) Performance of COD removal from oxide chemical mechanical polishing wastewater using iron electrocoagulation. J Environ Sci Health A 44:1289

    CAS  Google Scholar 

  • Wang C, Chou WL, Kuo YM (2009a) Removal of COD from laundry wastewater by electrocoagulation/electroflotation. J Hazard Mater 164(1):81–86

    Google Scholar 

  • Wang C, Chou W, Chen L, Chang S (2009b) Silica particles settling characteristics and removal performances of oxide chemical mechanical polishing wastewater treated by electrocoagulation technology. J Hazard Mater 161:344–350

    CAS  Google Scholar 

  • Wong H, Shang C, Cheung Y, Chen G (2002) Chloride assisted electrochemical disinfection. Proceedings of the Eighth Mainland-Taiwan Environmental Protection Conference

  • Xu Y, Jiang JQ, Quill K, Simon J, Shettle K (2009) Electrocoagulation: a new approach for the removal of boron containing wastes. Desalination Water Treat 2:131–138

    CAS  Google Scholar 

  • Yang Y, Liu L, Jin Q, (2008) Study on treatment of municipal domestic sewage by electrocoagulation and electroflotation. J Xi’an Univ. Architect. Technology 3

  • Yavuz Y (2007) EC and EF processes for the treatment of alcohol distillery wastewater. Sep Purif Technol 53:135–140

    CAS  Google Scholar 

  • Yetilmezsoy K, Ilhan F, Sapci-Zengin Z, Sakar S, Gonullu MT (2009) Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study. J Hazard Mater 162:120–132

    CAS  Google Scholar 

  • Yilmaz AE, Boncukcuoglu R, Kocakerim MM, Yilmaz MT, Paluluoglu C (2008) Boron removal from geothermal waters by electrocoagulation. J Hazard Mater 153:146–151

    CAS  Google Scholar 

  • Yılmaz AE, Boncukcuoğlu R, Kocakerm MM, Kocadagistan E (2008) An empirical model for kinetics of boron removal from boron-containing wastewaters by the electrocoagulation method in a batch reactor. Desalination 230:288–297

    Google Scholar 

  • Yousuf M, Schennach R, Parga J, Cocke D (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater B84:29–41

    Google Scholar 

  • Yuksel E, Sengil IA, Ozacar M (2009) The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chem Eng J 153:347–353

    Google Scholar 

  • Zaied M, Bellakhal N (2009) Electrocoagulation treatment of black liquor from paper industry. J Hazard Mater 163:995–1000

    CAS  Google Scholar 

  • Zhang S, Zhang J, Wang W (2013) Removal of phosphate from landscape water using an electrocoagulation process powered directly by photovoltaic solar modules. Sol Energy Mater Sol Cells 117:73–80

    CAS  Google Scholar 

  • Zodi S, Potier O, Lapicque F, Leclerc J, (2009) Treatment of the textile wastewaters by electrocoagulation: effect of operating parameters on the sludge settling characteristics. Sep Purif Technol 69:29–36

    Google Scholar 

  • Zodi S, Louvet J, Michon C, Potier O, Pons M, Lapicque F, Leclerc J (2010) Electrocoagulation as a tertiary treatment for paper mill wastewater: removal of non-biodegradable organic pollution and arsenic. Sep Purif Technol 81:62–68

    Google Scholar 

  • Zolotukhin IA (1989) A pilot-scale system for the treatment of mine water by electrocoagulation–flotation. Sov J Water Chem Technol 11:147–151

    CAS  Google Scholar 

  • Zongo I, Maiga AH, Wéthe J, Valentin G, Leclerc J, Paternotte G, Lapicque F (2009) Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance. J Hazard Mater 169:70–76

    CAS  Google Scholar 

  • Zouboulis AI, Lazaridis NK, Grohmann A (2002) Toxic metals removal from waste waters by up flow filtration with floating filter medium I. The case of zinc. Sep Sci Technol 37:403–416

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omprakash Sahu or P. K. Chaudhari.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, O., Mazumdar, B. & Chaudhari, P.K. Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res 21, 2397–2413 (2014). https://doi.org/10.1007/s11356-013-2208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2208-6

Keywords

Navigation