Skip to main content
Log in

Electrochemical advanced oxidation processes: today and tomorrow. A review

  • Electrochemical advanced oxidation processes for removal of toxic/persistent organic pollutants from water
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical (OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

ACP:

3-Amino-6-chloropyridazine

ADE:

Air diffusion electrode

AMI:

3-Amino-5-methylisoxazole

AO:

Anodic oxidation

AOP:

Advanced oxidation process

BDD:

Boron-doped diamond

BZQ:

p-Benzoquinone

CF:

Carbon felt

CNT:

Carbon nanotube

COD:

Chemical oxygen demand (mg of oxygen L−1)

DSA:

Dimensionally stable anode

e :

Electron

e CB :

Electron in the conduction band

E anod :

Anodic potential (V)

EAOP:

Electrochemical advanced oxidation process

E cat :

Cathodic potential (V)

EF:

Electro-Fenton

GC-MS:

Gas chromatography coupled to mass spectrometry

h :

Planck constant (6.626 × 10−34 m2 kg/s)

HPLC:

High-performance liquid chromatography

h + VB :

Positively charged vacancy or hole in the valence band

MMO:

Mixed metal oxides

PEC:

Photoelectrocatalysis

PEF:

Photoelectro-Fenton

R:

Organic compound

ROS:

Reactive oxygen species

RVC:

Reticulated vitreous carbon

SE:

Sonoelectrochemistry

SPEF:

Solar photoelectro-Fenton

TOC:

Total organic carbon (mg of carbon L−1)

US:

Ultrasounds

))):

Ultrasounds

λ :

Wavelength (nm)

ν :

Frequency (Hz)

References

  • Abdessalem AK, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2008) Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl Catal B Environ 78:334–341

    CAS  Google Scholar 

  • Almeida LC, Garcia-Segura S, Bocchi N, Brillas E (2011) Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: process optimization by response surface methodology. Appl Catal B Environ 103:21–30

    CAS  Google Scholar 

  • Alverez-Gallegos A, Pletcher D (1999) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: the removal of phenols and related compounds from aqueous effluents. Electrochim Acta 44:2483–2492

    CAS  Google Scholar 

  • Anglada Á, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755

    Google Scholar 

  • Anglada Á, Urtiaga AM, Ortiz I (2010) Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J Hazard Mater 181:729–735

    CAS  Google Scholar 

  • Anglada Á, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45:828–838

    CAS  Google Scholar 

  • Bai J, Liu Y, Li J, Zhou B, Zheng Q, Cai W (2010) A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl Catal B Environ 98:154–160

    CAS  Google Scholar 

  • Balci B, Oturan MA, Oturan N, Sirés I (2009) Decontamination of aqueous glyphosate, (aminomethyl)phosphonic acid, and glufosinate solutions by electro-Fenton-like process with Mn2+ as the catalyst. J Agric Food Chem 57:4888–4894

    CAS  Google Scholar 

  • Bautista P, Mohedano A, Casas J, Zazo J, Rodriguez J (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83:1323–1338

    CAS  Google Scholar 

  • Bellakhal N, Oturan MA, Oturan N, Dachraoui M (2006) Olive oil mill wastewater treatment by the electro-Fenton process. Environ Chem 3:345–349

    CAS  Google Scholar 

  • Bergmann MEH (2010) In: Comninellis C, Chen G (eds) Electrochemistry for the environment. Springer Science, New York, pp 163–204

    Google Scholar 

  • Bergmann H, Iourtchouk T, Schöps K, Bouzek K (2002) New UV irradiation and direct electrolysis—promising methods for water disinfection. Chem Eng J 85:111–117

    CAS  Google Scholar 

  • Bolyard M, Fair PS, Hautman DP (1992) Occurrence of chlorate in hypochlorite solutions used for drinking water disinfection. Environ Sci Technol 26:1663–1665

    CAS  Google Scholar 

  • Borràs N, Arias C, Oliver R, Brillas E (2013) Anodic oxidation, electro-Fenton and photoelectro-Fenton degradation of cyanazine using a boron-doped diamond anode and an oxygen-diffusion cathode. J Electroanal Chem 689:158–167

    Google Scholar 

  • Bouafia-Chergui S, Oturan N, Khalaf H, Oturan MA (2010) Parametric study on the effect of the ratios [H2O2]/[Fe3+] and [H2O2]/[substrate] on the photo-Fenton degradation of cationic azo dye Basic Blue 41. J Environ Sci Health A 45:622–629

    CAS  Google Scholar 

  • Brillas E, Martínez-Huitle CA (2011) Synthetic diamond films: Preparation, electrochemistry, characterization and applications. Wiley, Hoboken

    Google Scholar 

  • Brillas E, Bastida RM, Llosa E, Casado J (1995) Electrochemical destruction of aniline and 4–chloroaniline for wastewater treatment using a carbon–PTFE O2–fed cathode. J Electrochem Soc 142:1733–1741

    CAS  Google Scholar 

  • Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34:2253–2262

    CAS  Google Scholar 

  • Brillas E, Baños MA, Camps S, Arias C, Cabot P-L, Garrido JA, Rodríguez RM (2004) Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J Chem 28:314–322

    CAS  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    CAS  Google Scholar 

  • Bringas E, Saiz J, Ortiz I (2011) Kinetics of ultrasound-enhanced electrochemical oxidation of diuron on boron-doped diamond electrodes. Chem Eng J 172:1016–1022

    CAS  Google Scholar 

  • Brown RF, Jamison SE, Pandit UK, Pinkus J, White GR, Braendlin HP (1964) The reaction of Fenton’s reagent with phenoxyacetic acid and some halogen-substituted phenoxyacetic acids. J Org Chem 29:146–153

    Google Scholar 

  • Cañizares P, García-Gómez J, Sáez C, Rodrigo M (2003) Electrochemical oxidation of several chlorophenols on diamond electrodes: part I. Reaction mechanism. J Appl Electrochem 33:917–927

    Google Scholar 

  • Cañizares P, García-Gómez J, Sáez C, Rodrigo M (2004) Electrochemical oxidation of several chlorophenols on diamond electrodes: part II. Influence of waste characteristics and operating conditions. J Appl Electrochem 34:87–94

    Google Scholar 

  • Cañizares P, Díaz M, Domínguez JA, Lobato J, Rodrigo MA (2005a) Electrochemical treatment of diluted cyanide aqueous wastes. J Chem Technol Biotechnol 80:565–573

    Google Scholar 

  • Cañizares P, Larrondo F, Lobato J, Rodrigo M, Sáez C (2005b) Electrochemical synthesis of peroxodiphosphate using boron-doped diamond anodes. J Electrochem Soc 152:D191–D196

    Google Scholar 

  • Cañizares P, Lobato J, Paz R, Rodrigo M, Sáez C (2005c) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39:2687–2703

    Google Scholar 

  • Cañizares P, Paz R, Lobato J, Sáez C, Rodrigo MA (2006) Electrochemical treatment of the effluent of a fine chemical manufacturing plant. J Hazard Mater 138:173–181

    Google Scholar 

  • Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2007a) Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere 67:832–838

    Google Scholar 

  • Cañizares P, Larrondo F, Lobato J, Rodrigo MA, Saez C (2007 January 26) Síntesis electroquímica de sales de peroxodifosfato mediante electrodos de diamante conductor de la electricidad. Spanish Patent P200401820

  • Cañizares P, Sáez C, Sánchez-Carretero A, Rodrigo M (2009) Synthesis of novel oxidants by electrochemical technology. J Appl Electrochem 39:2143–2149

    Google Scholar 

  • Chan PY, El-Din MG, Bolton JR (2012) A solar-driven UV/Chlorine advanced oxidation process. Water Res 46:5672–5682

    CAS  Google Scholar 

  • Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25:23–28

    CAS  Google Scholar 

  • Daghrir R, Drogui P, Robert D (2012a) Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol A 238:41–52

    CAS  Google Scholar 

  • Daghrir R, Drogui P, Khakani MAE (2012b) Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim Acta 87:18–31

    Google Scholar 

  • Dai Q, Shen H, Xia Y, Chen F, Wang J, Chen J (2012) The application of a novel Ti/SnO2-Sb2O3 PTFE-La-Ce-β-PbO2 anode on the degradation of cationic gold yellow X-GL in sono-electrochemical oxidation system. Sep Purif Technol 104:9–16

    Google Scholar 

  • Dhaouadi A, Adhoum N (2009) Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J Electroanal Chem 637:33–42

    CAS  Google Scholar 

  • Dirany A, Efremova Aaron S, Oturan N, Sirés I, Oturan MA, Aaron JJ (2011) Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Anal Bioanal Chem 400:353–360

    Google Scholar 

  • Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46:4074–4082

    CAS  Google Scholar 

  • Esclapez M, Sáez V, Milán-Yáñez D, Tudela I, Louisnard O, González-García J (2010) Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020

    CAS  Google Scholar 

  • Fang T, Liao L, Xu X, Peng J, Jing Y (2013) Removal of COD and colour in real pharmaceutical wastewater by photoelectrocatalytic oxidation method. Environ Technol 34(6):779–786

    Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    CAS  Google Scholar 

  • Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434:52–55

    CAS  Google Scholar 

  • Flox C, Garrido JA, Rodríguez RM, Cabot P-L, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129:29–36

    Google Scholar 

  • Frontistis Z, Daskalaki VM, Katsaounis A, Poulios I, Mantzavinos D (2011) Electrochemical enhancement of solar photocatalysis: degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Res 45:2996–3004

    CAS  Google Scholar 

  • Fryda M, Matthée T, Mulcahy S, Höfer M, Schäfer L, Tröster I (2003) Applications of DIACHEM electrodes in electrolytic water treatment. Electrochem Soc Interface 12:40–44

    Google Scholar 

  • Gallard H, De Laat J, Legube B (1998) Effect of pH on the oxidation rate of organic compounds by Fe-II/H2O2. Mechanisms and simulation. New J Chem 22:263–268

    CAS  Google Scholar 

  • Gandini D, Michaud PA, Duo I, Mahé E, Haenni W, Perret A, Comninellis C (1999) Electrochemical behavior of synthetic boron-doped diamond thin film anodes. New Diam Front C Tec 9:303–316

    Google Scholar 

  • Garbellini GS (2012) In: Kleperis J, Linkov V (eds) Electrolysis. InTech, Rijeka, pp 205–226

    Google Scholar 

  • Garbellini GS, Salazar-Banda GR, Avaca LA (2008) Ultrasound applications in electrochemical systems: theoretical and experimental aspects. Quim Nova 31:123–133

    CAS  Google Scholar 

  • Garbellini GS, Salazar-Banda GR, Avaca LA (2010) Effects of ultrasound on the degradation of pentachlorophenol by boron-doped diamond electrodes. Electrochim Acta 28:405–415

    CAS  Google Scholar 

  • Garcia-Segura S, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2012) Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. Water Res 46:2067–2076

    Google Scholar 

  • Garcia-Segura S, Dosta S, Guilemany JM, Brillas E (2013) Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl Catal B Environ 132-133:142–150

    Google Scholar 

  • Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S (2012) Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J Hazard Mater 211–212:30–46

    Google Scholar 

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    CAS  Google Scholar 

  • González-García J, Banks CE, Šljukić B, Compton RG (2007) Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. Ultrason Sonochem 14:405–412

    Google Scholar 

  • González-García J, Esclapez MD, Bonete P, Hernández YV, Garretón LG, Sáez V (2010) Current topics on sonoelectrochemistry. Ultrasonics 50:318–322

    Google Scholar 

  • Guinea E, Garrido JA, Rodríguez RM, Cabot P-L, Arias C, Centellas F, Brillas E (2010) Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim Acta 55:2101–2115

    Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A Matter 147:332–351

    CAS  Google Scholar 

  • Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182–1184

    CAS  Google Scholar 

  • Irmak S, Yavuz HI, Erbatur O (2006) Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes. Appl Catal B Environ 63:243–248

    CAS  Google Scholar 

  • Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug beta-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B Environ 96:361–369

    Google Scholar 

  • Isarain-Chávez E, Rodríguez RM, Cabot PL, Centellas F, Arias C, Garrido JA, Brillas E (2011) Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector. Water Res 45:4119–4130

    Google Scholar 

  • Kapałka A, Fóti G, Comninellis C (2007) Investigations of electrochemical oxygen transfer reaction on boron-doped diamond electrodes. Electrochim Acta 53:1954–1961

    Google Scholar 

  • Kapałka A, Lanova B, Baltruschat H, Fóti G, Comninellis C (2008) Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochem Commun 10:1215–1218

    Google Scholar 

  • Kaplan F, Hesenov A, Gözmen B, Erbatur O (2011) Degradations of model compounds representing some phenolics in olive mill wastewater via electro–Fenton and photoelectro–Fenton treatments. Environ Technol 32:685–692

    CAS  Google Scholar 

  • Khataee AR, Vatanpour V, Amani Ghadim A (2009) Decolorization of CI Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study. J Hazard Mater 161:1225–1233

    Google Scholar 

  • Khataee AR, Zarei M, Asl SK (2010) Photocatalytic treatment of a dye solution using immobilized TiO2 nanoparticles combined with photoelectro-Fenton process: optimization of operational parameters. J Electroanal Chem 648:143–150

    CAS  Google Scholar 

  • Khataee AR, Zarei M, Khataee AR (2011) Electrochemical treatment of dye solution by oxalate catalyzed photoelectro-Fenton process using a carbon nanotube–PTFE cathode: optimization by central composite design. Clean Soil Air Water 39:482–490

    CAS  Google Scholar 

  • Khataee AR, Safarpour M, Zarei M, Aber S (2012) Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO2 nanophotocatalyst and modified graphite electrode with carbon nanotubes. J Mol Catal A Chem 363:58–68

    Google Scholar 

  • Lahkimi A, Oturan MA, Oturan N, Chaouch M (2007) Removal of textile dyes from water by the electro-Fenton process. Environ Chem Lett 5:35–39

    CAS  Google Scholar 

  • Li H, Lei H, Yu Q, Li Z, Feng X, Yang B (2010) Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL. Chem Eng J 160:417–422

    CAS  Google Scholar 

  • Lin Y-T, Liang C, Chen J-H (2011) Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82:1168–1172

    CAS  Google Scholar 

  • Liu Y, Gan X, Zhou B, Xiong B, Li J, Dong C, Bai J, Cai W (2009) Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J Hazard Mater 171:678–683

    CAS  Google Scholar 

  • Lorimer J, Mason T, Plattes M, Phull S, Walton D (2001) Degradation of dye effluent. Pure Appl Chem 73:1957–1968

    CAS  Google Scholar 

  • Lucas MS, Dias AA, Sampaio A, Amaral C, Peres JA (2007) Degradation of a textile reactive azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Res 41:1103–1109

    CAS  Google Scholar 

  • Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2008) Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. J Hazard Mater 156:170–177

    CAS  Google Scholar 

  • Marselli B, García-Gómez J, Michaud P-A, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83

    Google Scholar 

  • Martín de Vidales MJ, Sáez C, Cañizares P, Rodrigo MA (2012) Removal of triclosan by conductive–diamond electrolysis and sonoelectrolysis. J Chem Technol Biotechnol 88:823–828

    Google Scholar 

  • Martínez SS, Uribe EV (2012) Enhanced sonochemical degradation of azure B dye by the electroFenton process. Ultrason Sonochem 19:174–178

    Google Scholar 

  • Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145

    Google Scholar 

  • Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 12:1324–1340

    Google Scholar 

  • Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B Environ 142–143:877–890

    Google Scholar 

  • Nissen S, Alexander BD, Dawood I, Tillotson M, Wells RP, Macphee DE, Killham K (2009) Remediation of a chlorinated aromatic hydrocarbon in water by photoelectrocatalysis. Environ Pollut 157:72–76

    CAS  Google Scholar 

  • Oliver BG, Carey JH (1977) Photochemical production of chlorinated organics in aqueous solutions containing chlorine. Environ Sci Technol 11:893–895

    CAS  Google Scholar 

  • Osugi ME, Zanoni MVB, Chenthamarakshan CR, de Tacconi NR, Woldemariam GA, Mandal SS, Rajeshwar K (2008) Toxicity assessment and degradation of disperse azo dyes by photoelectrocatalytic oxidation on Ti/TiO2 nanotubular array electrodes. J Adv Oxid Technol 11:425–434

    CAS  Google Scholar 

  • Oturan MA (1999) Hydroxylation of aromatic drugs by the electro-Fenton method. Formation and identification of the metabolites of Riluzole. New J Chem 23:793–794

    CAS  Google Scholar 

  • Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482

    CAS  Google Scholar 

  • Oturan MA, Pinson J, Deprez D, Terlain B (1992) Polyhydroxylation of salicylic acid by electrocheically generated OH radicals. New J Chem 16:705–710

    CAS  Google Scholar 

  • Oturan MA, Sirés I, Oturan N, Pérocheau S, Laborde J-L, Trévin S (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332

    CAS  Google Scholar 

  • Oturan N, Panizza M, Oturan MA (2009) Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics. J Phys Chem A 113:10988–10993

    CAS  Google Scholar 

  • Oturan N, Zhou M, Oturan MA (2010) Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst. J Phys Chem A 114:10605–10611

    CAS  Google Scholar 

  • Oturan MA, Oturan N, Edelahi MC, Podvorica FI, Kacemi KE (2011) Oxidative degradation of herbicide diuron in aqueous medium by Fenton’s reaction based advanced oxidation processes. Chem Eng J 171:127–135

    CAS  Google Scholar 

  • Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10:165–170

    CAS  Google Scholar 

  • Özcan A, Şahin Y, Koparal AS, Oturan MA (2008) Degradation of picloram by the electro-Fenton process. J Hazard Mater 153:718–727

    Google Scholar 

  • Panizza M, Cerisola G (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res 35:3987–3992

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48:1515–1519

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47:6816–6820

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2009a) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2009b) Electrochemical degradation of gallic acid on a BDD anode. Chemosphere 77:1060–1064

    CAS  Google Scholar 

  • Panizza M, Cerisola G (2010) Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: anodic oxidation with diamond and lead dioxide anodes. J Electroanal Chem 638:28–32

    CAS  Google Scholar 

  • Panizza M, Oturan MA (2011) Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56:7084–7087

    CAS  Google Scholar 

  • Panizza M, Duo I, Michaud P, Cerisola G, Comnellis C (2000) Electrochemical generation of silver (II) at boron–doped diamond electrodes. Electrochem Solid-State 3:550–551

    CAS  Google Scholar 

  • Panizza M, Michaud P, Cerisola G, Comninellis C (2001) Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area. Electrochem Commun 3:336–339

    CAS  Google Scholar 

  • Panizza M, Zolezzi M, Nicolella C (2006) Biological and electrochemical oxidation of naphthalene sulfonates in a contaminated site leachate. J Chem Technol Biotechnol 81:225–232

    CAS  Google Scholar 

  • Panizza M, Sirés I, Cerisola G (2008) Anodic oxidation of mecoprop herbicide at lead dioxide. J Appl Electrochem 38:923–929

    CAS  Google Scholar 

  • Park H, Bak A, Ahn YY, Choi J, Hoffmannn MR (2012) Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. J Hazard Mater 211:47–54

    Google Scholar 

  • Pelegrini R, Reyes J, Durán N, Zamora PP, De Andrade AR (2000) Photoelectrochemical degradation of lignin. J Appl Electrochem 30:953–958

    CAS  Google Scholar 

  • Peralta-Hernández J, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2006) In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology. Water Res 40:1754–1762

    Google Scholar 

  • Peralta-Hernández JM, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2008) Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution. Dyes Pigments 76:656–662

    Google Scholar 

  • Phutdhawong W, Chowwanapoonpohn S, Buddhasukh D (2000) Electrocoagulation and subsequent recovery of phenolic compounds. Anal Sci 16:1083–1084

    CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    CAS  Google Scholar 

  • Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83:140–149

    CAS  Google Scholar 

  • Polcaro AM, Mascia M, Palmas S, Vacca A (2002) Kinetic study on the removal of organic pollutants by an electrochemical oxidation process. Ind Eng Chem Res 41:2874–2881

    CAS  Google Scholar 

  • Polcaro AM, Vacca A, Palmas S, Mascia M (2003) Electrochemical treatment of wastewater containing phenolic compounds: oxidation at boron-doped diamond electrodes. J Appl Electrochem 33:885–892

    CAS  Google Scholar 

  • Polcaro AM, Vacca A, Mascia M, Palmas S (2005) Oxidation at boron doped diamond electrodes: an effective method to mineralise triazines. Electrochim Acta 50:1841–1847

    CAS  Google Scholar 

  • Polcaro AM, Vacca A, Mascia M, Palmas S, Ruiz JR (2009) Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides. J Appl Electrochem 39:2083–2092

    Google Scholar 

  • Rodriguez J, Rodrigo MA, Panizza M, Cerisola G (2009) Electrochemical oxidation of acid yellow 1 using diamond anode. J Appl Electrochem 39:2285–2289

    CAS  Google Scholar 

  • Rooze J, Rebrov EV, Schouten JC, Keurentjes JT (2013) Dissolved gas and ultrasonic cavitation—a review. Ultrason Sonochem 20(1):1–11

    CAS  Google Scholar 

  • Ruiz EJ, Ortega-Borges R, Jurado JL, Chapman T, Meas Y (2009) Simultaneous anodic and cathodic production of sodium percarbonate in aqueous solution. Electrochem Solid-State 12:E1–E4

    CAS  Google Scholar 

  • Ruiz EJ, Arias C, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2011a) Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 82:495–501

    Google Scholar 

  • Ruiz EJ, Hernández-Ramírez A, Peralta-Hernández JM, Arias C, Brillas E (2011b) Application of solar photoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentrations. Chem Eng J 171:385–392

    Google Scholar 

  • Sáez C, Rodrigo MA, Cañizares P (2008) Electrosynthesis of ferrates with diamond anodes. AIChE J 54:1600–1607

    Google Scholar 

  • Sáez C, Cañizares P, Sánchez-Carretero A, Rodrigo M (2010a) Electrochemical synthesis of perbromate using conductive-diamond anodes. J Appl Electrochem 40:1715–1719

    Google Scholar 

  • Sáez V, Esclapez MD, Tudela I, Bonete P, Louisnard O, González-García J (2010b) 20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulfate aqueous media: Influence of the operational variables in batch mode. J Hazard Mater 183:648–654

    Google Scholar 

  • Sáez V, Tudela I, Esclapez MD, Bonete P, Louisnard O, González-García J (2011) Sonoelectrochemical degradation of perchloroethylene in water: enhancement of the process by the absence of background electrolyte. Chem Eng J 168:649–655

    Google Scholar 

  • Salazar R, Garcia-Segura S, Ureta-Zañartu MS, Brillas E (2011) Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochim Acta 56:6371–6379

    CAS  Google Scholar 

  • Salazar R, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115-116:107–116

    Google Scholar 

  • Sánchez-Carretero A, Sáez C, Cañizares P, Rodrigo M (2011) Electrochemical production of perchlorates using conductive diamond electrolyses. Chem Eng J 166:710–714

    Google Scholar 

  • Sapkal RT, Shinde SS, Mahadik MA, Mohite VS, Waghmode TR, Govindwar SP, Rajpure KY, Bhosale CH (2012) Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films. J Photochem Photobiol B 114:102–107

    CAS  Google Scholar 

  • Scott-Emuakpor E, Kruth A, Todd M, Raab A, Paton G, Macphee D (2012) Remediation of 2,4-dichlorophenol contaminated water by visible light-enhanced WO3 photoelectrocatalysis. Appl Catal B Environ 123–124:433–439

    Google Scholar 

  • Serrano K, Michaud P, Comninellis C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim Acta 48:431–436

    CAS  Google Scholar 

  • Shih Y-J, Putra WN, Huang Y–H, Tsai J–C (2012) Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/persulfate oxidation and sequential adsorption. Chemosphere 89:1262–1266

    CAS  Google Scholar 

  • Siddique M, Farooq R, Khan ZM, Khan Z, Shaukat S (2011) Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor. Ultrason Sonochem 18:190–196

    CAS  Google Scholar 

  • Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229

    Google Scholar 

  • Sirés I, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2006a) Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. J Electrochem Soc 153:D1–D9

    Google Scholar 

  • Sirés I, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2006b) Electrochemical degradation of clofibric acid in water by anodic oxidation: comparative study with platinum and boron-doped diamond electrodes. Electrochim Acta 52:75–85

    Google Scholar 

  • Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007a) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72:382–394

    Google Scholar 

  • Sirés I, Oturan N, Oturan MA, Rodríguez RM, Garrido JA, Brillas E (2007b) Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta 52:5493–5503

    Google Scholar 

  • Sirés I, Centellas F, Garrido JA, Rodríguez RM, Arias C, Cabot P-L, Brillas E (2007c) Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts. Appl Catal B Environ 72:373–381

    Google Scholar 

  • Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of β-blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Res 44:3109–3120

    Google Scholar 

  • Skoumal M, Rodriguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54:2077–2085

    CAS  Google Scholar 

  • Sun Y, Pignatello JJ (1993a) Activation of hydrogen peroxide by iron (III) chelates for abiotic degradation of herbicides and insecticides in water. J Agric Food Chem 41:308–312

    CAS  Google Scholar 

  • Sun Y, Pignatello JJ (1993b) Photochemical reactions involved in the total mineralization of 2,4-D by iron (3+)/hydrogen peroxide/UV. Environ Sci Technol 27:304–310

    Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    CAS  Google Scholar 

  • Urtiaga A, Rueda A, Anglada Á, Ortiz I (2009) Integrated treatment of landfill leachates including electrooxidation at pilot plant scale. J Hazard Mater 166:1530–1534

    CAS  Google Scholar 

  • Walling C (1998) Intermediates in the reactions of Fenton type reagents. Acc Chem Res 31:155–157

    CAS  Google Scholar 

  • Wang A, Qu J, Liu H, Ru J (2008) Mineralization of an azo dye Acid Red 14 by photoelectro-Fenton process using an activated carbon fiber cathode. Appl Catal B Environ 84:393–399

    CAS  Google Scholar 

  • Wang A, Li Y-Y, Estrada AL (2011) Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Appl Catal B Environ 102:378–386

    CAS  Google Scholar 

  • Weiss E, Groenen-Serrano K, Savall A (2008a) A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes. J Appl Electrochem 38:329–337

    CAS  Google Scholar 

  • Weiss E, Sáez C, Groenen-Serrano K, Cañizares P, Savall A, Rodrigo M (2008b) Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. J Appl Electrochem 38:93–100

    CAS  Google Scholar 

  • Xie Y-B, Li X (2006) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes. Mater Chem Phys 95:39–50

    CAS  Google Scholar 

  • Xin Y, Liu H, Han L, Zhou Y (2011) Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes. J Hazard Mater 192:1812–1818

    CAS  Google Scholar 

  • Zhang H, Zhang D, Zhou J (2006) Removal of COD from landfill leachate by electro-Fenton method. J Hazard Mater 135:106–111

    CAS  Google Scholar 

  • Zhang Z, Yuan Y, Liang L, Cheng Y, Shi G, Jin L (2008) Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J Hazard Mater 158:517–522

    CAS  Google Scholar 

  • Zhang A, Zhou M, Liu L, Wang W, Jiao Y, Zhou Q (2010) A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode. Electrochim Acta 55:5091–5099

    CAS  Google Scholar 

  • Zhao X, Qu J, Liu H, Qiang Z, Liu R, Hu C (2009) Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6–boron-doped diamond hybrid electrode under visible light irradiation. Appl Catal B Environ 91:539–545

    CAS  Google Scholar 

  • Zhao H, Wang Y, Wang Y, Cao T, Zhao G (2012) Electro-fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Appl Catal B-Environ 125:120–127

    CAS  Google Scholar 

  • Zhou M, Tan Q, Wang Q, Jiao Y, Oturan N, Oturan MA (2012) Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater 215–216:287–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panizza.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirés, I., Brillas, E., Oturan, M.A. et al. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21, 8336–8367 (2014). https://doi.org/10.1007/s11356-014-2783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2783-1

Keywords

Navigation