Skip to main content
Log in

Phytoextraction from mine spoils: insights from New Caledonia

  • Combining Phytoextraction and Ecological Catalysis: an Environmental, Ecological, Ethic and Economic Opportunity
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increasing pressure on mineral resources has drawn research efforts into innovative supply and recycling. Metal-rich biomass produced in phytoextraction recently proved an interesting starting material for green chemistry. It allows the production of new catalysts, referred to as ecocatalysts. Ecocatalysts provide increased yields in chemical production and increased regio- and chemo-selectivity, which result in high added value. This new approach to using metal-rich biomass could spur the development of phytoextraction, a technique considered promising for long, yet without credible economic outlets. In this regard, metallophyte biodiversity hotspots, such as New Caledonia, are of particular interest for biomass supply. Potential phytoextraction from mine spoils using two species endemic to New Caledonia is discussed here. Geissois pruinosa, a hypernickelophore, and Grevillea exul, a Mn accumulator, were selected for these original experiments. The results presented here 20 months after plantation of young trees from a nursery show the interest of the approach. Mean Ni concentrations of up to 1513 mg kg−1 are reported in G. pruinosa, as well as 2000 mg kg−1 Mn in G. exul. Concentrations of Ni and Mn in the leaves of each species appear to be correlated with leaf age. Plantation of these species may also ensure mine reclamation, and experiments were conducted with the principles of ecological restoration in mind adding a further dimension to the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baker A, Brooks R, Reeves R (1988) Growing for gold… and copper… and zinc. New Sci 116:44–48

    Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2013) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremed

  • Barbaroux R, Plasari E, Mercier G, Simonnot MO, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119. doi:10.1016/j.scitotenv.2012.01.063

    Article  CAS  Google Scholar 

  • Boyd RS, Jaffré T (2009) Elemental concentrations of eleven new caledonian plant species from serpentine soils: elemental correlations and leaf-age effects. Northeast Nat 16:93–110. doi:10.1656/045.016.0508

    Article  Google Scholar 

  • Boyd RS, Jaffre T, Odom JW (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410. doi:10.1111/j.1744-7429.1999.tb00382.x

    Article  Google Scholar 

  • Bradshaw AD Restoration after mining for metals—an ecological view. In: Jaffré T, Reeves RD, Becquer T, editors. Ecologie des milieux sur roches ultramafiques et sur sols métallifères., Nouméa, 1997. Documents scientifiques et techniques. ORSTOM, p 285–288

  • Brooks RR, Trow JM, Veillon JM, Jaffré T (1981) Studies on manganese-accumulating alyxia species from new caledonia. Taxon 30:420–423. doi:10.2307/1220141

    Article  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362. doi:10.1016/s1360-1385(98)01283-7

    Article  Google Scholar 

  • Callahan DL, Roessner U, Dumontet V, De Livera AM, Doronila A, Baker AJM, Kolev SD (2012) Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry 81:80–89. doi:10.1016/j.phytochem.2012.06.010

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8 doi:10.1016/s0958-1669(97)80004-3

  • Chaney R et al (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banuelos G (eds) Phytoremediation of Contaminated Soil and Water. CRC Press, Boca Raton FL.

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443. doi:10.2134/jeq2006.0514

    Article  CAS  Google Scholar 

  • Cherrier JF (1990) Reconstitution of vegetative cover in mine areas in new caledonia. Bois ForetsTrop 5–23

  • Conesa HM, Schulin R (2010) The Cartagena - La Union mining district (SE spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. J Environ Monit 12:1225–1233. doi:10.1039/c000346h

    Article  CAS  Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool?. Sci World J 10 doi:10.1100/2012/173829

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants—an overview. In Vitro Cell Dev Biol Plant 29P:207–212

    Article  Google Scholar 

  • Dodson JR, Hunt AJ, Parker HL, Yang Y, Clark JH (2012) Elemental sustainability: towards the total recovery of scarce metals. Chem Eng Process 51:69–78. doi:10.1016/j.cep.2011.09.008

    Article  CAS  Google Scholar 

  • Enright NJ, Miller BP, Perry GLW, Goldblum D, Jaffré T (2014) Stress-tolerator leaf traits determine population dynamics in the endangered New Caledonian conifer Araucaria muelleri. Aust Ecol 39:60–71. doi:10.1111/aec.12045

    Article  Google Scholar 

  • Ernst WHO (2000) Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146:357–358. doi:10.1046/j.1469-8137.2000.00669.x

    Article  Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes—options and impossibilities. Chem Erde Geochem 65:29–42. doi:10.1016/j.chemer.2005.06.001

    Article  CAS  Google Scholar 

  • Escande V, Olszewski TK, Grison C (2013) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction. Comptes Rendus Chimie

  • Escande V et al (2014a) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catalysis B-Environ 146:279–288. doi:10.1016/j.apcatb.2013.04.011

    Article  CAS  Google Scholar 

  • Escande V, Tomasz O, Eddy P, Grison C (2014b) Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates. Chem Sus Chem: in press, doi: 10.1002/cssc.201400078

  • Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36. doi:10.1007/s11104-007-9405-3

    Article  CAS  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185. doi:10.1111/j.1469-8137.2007.02253.x

    CAS  Google Scholar 

  • Fogliani B, Hopkins HCF, Bouraima-Madjebi S, Medevielle V (2009) Morphological development of Geissois pruinosa (Cunoniaceae) from seed to adult, and the expression of plesiomorphic characters in seedlings. Flora 204:7–16. doi:10.1016/j.flora.2007.11.009

    Article  Google Scholar 

  • Grison C, Escande V (2013) Use of certain manganese-accumulating plants for carrying out organic chemistry reactions. WO2014016509-A1,

  • Grison C, Escande V (2013) Use of certain metal-accumulating plants for implementing organic chemistry reactions. WO 2013150197 A1.

  • Grison C, Escarre J (2011) Use of calcined plant/its part having accumulated at least one metal having zinc, nickel or copper to prepare composition having a metal catalyst for allowing the implementation of organic synthesis reactions e.g. halogenation of alcohols. WO2011064487-A1

  • Grison C, Escarre J (2011) Use of plant/its part having accumulated at least one metal having zinc, nickel or copper to prepare composition having a metal catalyst for allowing the implementation of organic synthesis reactions e.g. halogenation of alcohols. WO2011064462-A1

  • Grison C, Escande V, Petit E, Garoux L, Boulanger C, Grison C (2013) Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Advances 3:22340–22345. doi:10.1039/c3ra43995j

    Article  CAS  Google Scholar 

  • Hopkins H, Pillon Y (2011) Further new endemic taxa of Cunoniaceae from New Caledonia. Kew Bull 66:405–423

    Article  Google Scholar 

  • Hubbert MK (1956) Nuclear energy and the fossil fuels, vol 95. Shell Development Company, Exploration and Production Research Division Houston, TX

    Google Scholar 

  • Hunt AJ et al (2014) Phytoextraction as a tool for green chemistry. Green Process Synth 3:3–22

    CAS  Google Scholar 

  • Jaffré T (1977) Accumulation du manganèse par des espèces associées aux terrains ultrabasiques Comptes Rendus de l’Académie des sciences. Paris 284:1573–1575

    Google Scholar 

  • Jaffré T (1979) Accumulation du manganèse par les proteacées de Nouvelle-Calédonie Comptes Rendus de l’Académie des sciences. Paris 285:425–428

    Google Scholar 

  • Jaffré T, Schmid M (1974) Accumulation de nickel par une rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker Compte Rendus de l’Académie des Sciences. Paris Sér D 278:1727–1730

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580. doi:10.1126/science.193.4253.579

    Article  Google Scholar 

  • Jaffré T, Brooks RR, Trow JM (1979) Hyper-accumulation of nickel by geissois species. Plant Soil 51:157–162. doi:10.1007/bf02205937

    Article  Google Scholar 

  • Jaffré T, Rigault F, Sarrailh J-M (1993) Essais de revégétalisation par des espèces locales d’anciens sites miniers de la région de Thio. Nouméa

  • Jaffré T, Munzinger J, Lowry PP II (2010) Threats to the conifer species found on New Caledonia’s ultramafic massifs and proposals for urgently needed measures to improve their protection. Biodivers Conserv 19:1485–1502. doi:10.1007/s10531-010-9780-6

    Article  Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279. doi:10.3389/fpls.2013.00279

    Article  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Lamont BB (2003) Structure, ecology and physiology of root clusters—a review. Plant Soil 248:1–19. doi:10.1023/a:1022314613217

    Article  CAS  Google Scholar 

  • Leon V et al (2005) Effects of three nickel salts on germinating seeds of Grevillea exul var. rubiginosa, an endemic serpentine proteaceae. Ann Bot 95:609–618. doi:10.1093/aob/mci066

    Article  CAS  Google Scholar 

  • L’Huillier L et al (2010) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration

  • Li YM et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115. doi:10.1023/a:1022527330401

    Article  CAS  Google Scholar 

  • Losfeld G, de la Blache PV, Escande V, Grison C (2012) Zinc hyperaccumulating plants as renewable resources for the chlorination process of alcohols. Green Chem Lett Rev 5 doi:10.1080/17518253.2012.667157

  • Losfeld G, Escande V, de La Blache PV, L’Huillier L, Grison C (2012) Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel-Crafts alkylation and acylation. Catal Today 189 doi:10.1016/j.cattod.2012.02.044

  • Losfeld G, Escande V, Jaffré T, L’Huillier L, Grison C (2012c) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910. doi:10.1016/j.chemosphere.2012.05.004

    Article  CAS  Google Scholar 

  • Losfeld G, L’Huillier L, Fogliani B, Jaffré T, Grison C (2014) Mining in New Caledonia: environmental stakes and restoration opportunities. Environ Sci Pollut Res doi:10.1007/s11356-014-3358-x

  • Losfeld G, L’Huillier L, Fogliani B, Mc Coy S, Grison C, Jaffré T (2014) Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ Sci Pollut Res doi:10.1007/s11356-014-3445-z

  • Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot eru025

  • Mizuno T, Asahina R, Hosono A, Tanaka A, Senoo K, Obata H (2008) Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J Plant Nutr 31:1811–1819. doi:10.1080/01904160802325396

    Article  CAS  Google Scholar 

  • Morat P et al (2012) The taxonomic reference base Florical and characteristics of the native vascular flora of New Caledonia. Adansonia 34:179–221

    Article  Google Scholar 

  • Mudd G, Ward J Will (2008) Sustainability constraints cause “peak minerals”. In: 3rd International Conference on Sustainability Engineering and Science: Blueprints for Sustainable Infrastructure. Auckland

  • Oregon Department of Agriculture (2014) ODA Plant Programs, Noxious Weed Control yellow tuft (Alyssum murale, A. corsicum). http://www.oregon.gov/ODA/PLANT/WEEDS/pages/weed_yellowtuft.aspx

  • Pelletier B (2006) Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity Compendium of marine species from New Caledonia 17–30

  • Pétard J (1993) Les méthodes d’analyse: tome 1. Analyse de sols

  • Pillon Y, Hopkins HCF, Rigault F, Jaffré T, Stacy EA (2014) Cryptic adaptive radiation in tropical forest trees in New Caledonia. New Phytol 202:521–530. doi:10.1111/nph.12677

    Article  Google Scholar 

  • Rabier J et al (2007) Characterization of metal tolerance and accumulation in Grevillea exul var exul. Int J Phytoremed 9:419–435. doi:10.1080/15226510701606315

    Article  CAS  Google Scholar 

  • Rabier J, Laffont-Schwob I, Notonier R, Fogliani B, Bouraima-Madjebi S (2008) Anatomical element localization by EDXS in Grevillea exul var. exul under nickel stress. Environ Pollut 156:1156–1163. doi:10.1016/j.envpol.2008.04.001

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. Veg Ultramafic (Serpentine) Soils 253–277

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65. doi:10.1023/a:1022572517197

    Article  CAS  Google Scholar 

  • Robinson BH (1997) The phytoextraction of heavy-metals from metalliferous soils. Massey University

  • Robinson B, Fernandez JE, Madejon P, Maranon T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125. doi:10.1023/a:1022586524971

    Article  CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Malkowski E, Pogrzeba M, Kuperberg JM, Krynski K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379. doi:10.1016/j.envpol.2003.09.012

    Article  CAS  Google Scholar 

  • Tang Y-T et al (2012) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488

    Article  CAS  Google Scholar 

  • Thillier Y, Losfeld G, Escande V, Dupouy C, Vasseur J-J, Debart F, Grison C (2013) Metallophyte wastes and polymetallic catalysis: a promising combination in green chemistry. The illustrative synthesis of 5 '-capped RNA. RSC Advances 3:5204–5212. doi:10.1039/c3ra23115a

    Article  CAS  Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228. doi:10.1016/s0045-6535(99)00414-2

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. doi:10.1007/s11104-012-1287-3

    Article  Google Scholar 

  • van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79. doi:10.1016/j.gexplo.2013.01.009

    Article  Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice?. Environ Pollut 150 doi:10.1016/j.envpol.2007.05.024

  • Verhoef EV, Dijkema GPJ, Reuter MA (2004) Process knowledge, system dynamics, and metal ecology. J Ind Ecol 8:23–43. doi:10.1162/1088198041269382

    Article  CAS  Google Scholar 

  • Wellmer F-W (2012) Sustainable development and mineral resources vol 15. BRGM

  • Whiting SN et al (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116. doi:10.1111/j.1061-2971.2004.00367.x

    Article  Google Scholar 

  • Wolfe AK, Bjornstad DJ (2002) Why would anyone object? An exploration of social aspects of phytoremediation acceptability. Crit Rev Plant Sci 21:429–438. doi:10.1080/0735-260291044304

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the ‘Agence Nationale pour la Recherche’ (ANR 11ECOT01101), Société Le Nickel (SLN), and Ecole Polytechnique, Paris Tech (PhD studentship) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Grison.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losfeld, G., Mathieu, R., L’Huillier, L. et al. Phytoextraction from mine spoils: insights from New Caledonia. Environ Sci Pollut Res 22, 5608–5619 (2015). https://doi.org/10.1007/s11356-014-3866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3866-8

Keywords

Navigation