Skip to main content

Advertisement

Log in

Effects of bisphenol A on chlorophyll fluorescence in five plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effects of bisphenol A (BPA) on plant photosynthesis and determine whether the photosynthetic response to BPA exposure varies in different plants. Chlorophyll fluorescence techniques were used to investigate the effects of BPA on chlorophyll fluorescence parameters in tomato (Lycopersicum esculentum), lettuce (Lactuca sativa), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa) seedlings. Low-dose (1.5 or 3.0 mg L−1) BPA exposure improved photosystem II efficiency, increased the absorption and conversion efficiency of primary light energy, and accelerated photosynthetic electron transport in each plant, all of which increased photosynthesis. These effects weakened or disappeared after the withdrawal of BPA. High-dose (10.0 mg L−1) BPA exposure damaged the photosystem II reaction center, inhibited the photochemical reaction, and caused excess energy to be released as heat. These effects were more evident after the highest BPA dose (17.2 mg L−1), but they weakened after the withdrawal of BPA. The magnitude of BPA exposure effects on the chlorophyll fluorescence parameters in the five plants followed the order: lettuce > tomato > soybean > maize > rice. The opposite order was observed following the removal of BPA. In conclusion, the chlorophyll fluorescence response in plants exposed to BPA depended on BPA dose and plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamakis IDS, Panteris E, Cherianidou A, Eleftheriou EP (2013) Effects of bisphenol A on the microtubule arrays in root meristematic cells of Pisum sativum L. Mutat Res Genet Toxicol Environ 750:111–120

    Article  CAS  Google Scholar 

  • Ambavaram MMR, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A (2014) Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 5:1–14

    Article  Google Scholar 

  • Bellasio C, Griffiths H (2014) Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ 37:1046–1058

    Article  CAS  Google Scholar 

  • Dai HP, Wei Y, Yang TX, Sa WQ, Wei AZ (2012) Influence of cadmium stress on chlorophyll fluorescence characteristics in Populus x canescens. J Food Agric Environ 10:1281–1283

    CAS  Google Scholar 

  • Damm A, Elbers J, Erler A, Gioli B, Hamdi K, Hutjes R, Kosvancova M, Meroni M, Miglietta F, Moersch A, Moreno J, Schickling A, Sonnenschein R, Udelhoven T, van der Linden S, Hostert P, Rascher U (2010) Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob Chang Biol 16:171–186

    Article  Google Scholar 

  • de Sousa CP, de Farias ME, Schock AA, Bacarin MA (2014) Photosynthesis of soybean under the action of a photosystem II-inhibiting herbicide. Acta Physiol Plant 36:3051–3062

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  CAS  Google Scholar 

  • Dogan M, Korkunc M, Yumrutas O (2012) Effects of bisphenol A and tetrabromobisphenol A on bread and durum wheat varieties. Ekoloji 21:114–122

    Article  CAS  Google Scholar 

  • Ferrara G, Loffredo E, Senesi N (2006) Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta 223:910–916

    Article  CAS  Google Scholar 

  • Figueroa FL, Jerez CG, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am J Aquat Res 41:801–819

    Article  Google Scholar 

  • Freitas M, Azevedo J, Pinto E, Neves J, Campos A, Vasconcelos V (2015) Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicol Environ Saf 116:59–67

    Article  CAS  Google Scholar 

  • Geens T, Goeyens L, Covaci A (2011) Are potential sources for human exposure to bisphenol-A overlooked? Int J Hyg Environ Health 214:339–347

    Article  CAS  Google Scholar 

  • Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24–35

    Article  CAS  Google Scholar 

  • Guidi L, Mori S, Degl’Innocenti E, Pecchia S (2007) Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiol Biochem 45:851–857

    Article  CAS  Google Scholar 

  • Guo DP, Guo YP, Zhao JP, Liu H, Peng Y, Wang QM, Chen JS, Rao GZ (2005) Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci 168:57–63

    Article  CAS  Google Scholar 

  • Harbinson J, Genty B, Baker NR (1990) The relationship between CO2 assimilation and electron transport in leaves. Photosynth Res 25:213–224

    Article  CAS  Google Scholar 

  • Hawker DW, Cropp R, Boonsaner M (2013) Uptake of zwitterionic antibiotics by rice (Oryza sativa L.) in contaminated soil. J Hazard Mater 263:458–466

    Article  CAS  Google Scholar 

  • He J, Austin PT, Nichols MA, Lee SK (2007) Elevated root-zone CO2 protects lettuce plants from midday depression of photosynthesis. Environ Exp Bot 61:94–101

    Article  CAS  Google Scholar 

  • Hu H, Wang L, Wang Q, Jiao L, Hua W, Zhou Q, Huang X (2014) Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. Environ Toxicol Chem 33:2455–2462

    Article  CAS  Google Scholar 

  • Huang LF, Zheng JH, Zhang YY, Hu WH, Mao WH, Zhou YH, Yu JQ (2006) Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: the cause for midday depression in CO2 assimilation. Sci Hortic 110:214–218

    Article  CAS  Google Scholar 

  • Ismail IM, Basahi JM, Hassan IA (2014) Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Sci Total Environ 497:585–593

    Article  Google Scholar 

  • Jandegian CM, Deem SL, Bhandari RK, Holliday CM, Nicks D, Rosenfeld CS, Selcer KW, Tillitt DE, Vom Saal FS, Vélez-Rivera V (2015) Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta). Gen Comp Endocrinol. doi:10.1016/j.ygcen.2015.04.003

    Google Scholar 

  • Kopsell DA, Armel GR, Abney KR, Vargas JJ, Brosnan JT, Kopsell DE (2011) Leaf tissue pigments and chlorophyll fluorescence parameters vary among sweet corn genotypes of differential herbicide sensitivity. Pestic Biochem Physiol 99:194–199

    Article  CAS  Google Scholar 

  • Lim DS, Kwack SJ, Kim KB, Kim HS, Lee BM (2009a) Potential risk of bisphenol A migration from polycarbonate containers after heating, boiling, and microwaving. J Toxicol Environ Health A 72:1285–1291

    Article  CAS  Google Scholar 

  • Lim DS, Kwack SJ, Kim KB, Kim HS, Lee BM (2009b) Risk assessment of bisphenol A migrated from canned foods in Korea. J Toxicol Environ Health A 72:1327–1335

    Article  CAS  Google Scholar 

  • Liu N, Peng C, Lin Z, Lin G, Pan X (2007) Effects of simulated SO2 pollution on subtropical forest succession: toward chlorophyll fluorescence concept. Pak J Bot 39:1921–1935

    Google Scholar 

  • Mamatha H, Rao NKS, Laxman RH, Shivashankara KS, Bhatt RM, Pavithra KC (2014) Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynthetica 52:519–528

    Article  CAS  Google Scholar 

  • Na YW, Jeong H, Lee S-Y, Choi HG, Kim S-H, Rho IR (2014) Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species. Hortic Environ Biotechnol 55:280–286

    Article  CAS  Google Scholar 

  • Neumann K, Verburg PH, Stehfest E, Mueller C (2010) The yield gap of global grain production: a spatial analysis. Agric Syst 103:316–326

    Article  Google Scholar 

  • Nie L, Wang L, Wang Q, Wang S, Zhou Q, Huang X (2015) Effects of bisphenol A on mineral nutrition in soybean seedling roots. Environ Toxicol Chem 34:133–140

    Article  CAS  Google Scholar 

  • Papazoglou EG, Serelis KG, Bouranis DL (2007) Impact of high cadmium and nickel soil concentration on selected physiological parameters of Arundo donax L. Eur J Soil Biol 43:207–215

    Article  CAS  Google Scholar 

  • Perez-Torres E, Garcia A, Dinamarca J, Alberdi M, Gutierrez A, Gidekel M, Ivanov AG, Huner NPA, Corcuera LJ, Bravo LA (2004) The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Funct Plant Biol 31:731–741

    Article  CAS  Google Scholar 

  • Qiu Z, Wang L, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90:1274–1280

    Article  CAS  Google Scholar 

  • Rambo L, Ma BL, Xiong Y, Ferreira da Silvia PR (2010) Leaf and canopy optical characteristics as crop-N-status indicators for field nitrogen management in corn. J Plant Nutr Soil Sci 173:434–443

    Article  CAS  Google Scholar 

  • Ravi KB, Reddy KRR, Shankaranarayanan J, Deshpande JV, Juturu V, Soni MG (2014) Safety evaluation of zeaxanthin concentrate (OmniXan™): acute, subchronic toxicity and mutagenicity studies. Food Chem Toxicol 72:30–39

    Article  CAS  Google Scholar 

  • Shao G, Li Z, Ning T, Zheng Y (2013) Responses of photosynthesis, chlorophyll fluorescence, and grain yield of maize to controlled-release urea and irrigation after anthesis. J Plant Nutr Soil Sci 176:595–602

    Article  CAS  Google Scholar 

  • Simic D, Lepedus H, Jurkovic V, Antunovic J, Cesar V (2014) Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments. J Integr Plant Biol 56:695–708

    Article  CAS  Google Scholar 

  • Speranza A, Crosti P, Malerba M, Stocchi O, Scoccianti V (2011) The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen. Plant Biol 13:209–217

    Article  CAS  Google Scholar 

  • Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  • Sun H, Wang L, Zhou Q (2013a) Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings. Environ Toxicol Chem 32:174–180

    Article  Google Scholar 

  • Sun H, Wang L, Zhou Q, Huang X (2013b) Effects of bisphenol A on ammonium assimilation in soybean roots. Environ Sci Pollut Res 20:8484–8490

    Article  CAS  Google Scholar 

  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    Article  CAS  Google Scholar 

  • Xie Y, Cai X, Liu W, Tao G, Chen Q, Zhang Q (2013) Effects of lanthanum nitrate on growth and chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress. J Rare Earths 31:823–829

    Article  CAS  Google Scholar 

  • Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42:415–418

    Article  CAS  Google Scholar 

  • Zarco-Tejada PJ, Berni JAJ, Suarez L, Sepulcre-Canto G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113:1262–1275

    Article  Google Scholar 

  • Zhao S, Zheng F, He W, Wu H, Pan S, Lam H-M (2015) Impacts of nucleotide fixation during soybean domestication and improvement. BMC Plant Biol 15:463

    Google Scholar 

  • Zienkiewicz A, Carlos Jimenez-Lopez J, Zienkiewicz K, de Dios AJ, Isabel Rodriguez-Garcia M (2011) Development of the cotyledon cells during olive (Olea europaea L.) in vitro seed germination and seedling growth. Protoplasma 248:751–765

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Natural Science Foundation of China (31170477), the National Water Pollution Control and Management Technology Major Project (2012ZX07101_013), and the Research and Innovation Project for Postgraduate of Higher Education Institutions of Jiangsu Province in 2014 (KYLX_1160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou or Xiaohua Huang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, L., Li, M. et al. Effects of bisphenol A on chlorophyll fluorescence in five plants. Environ Sci Pollut Res 22, 17724–17732 (2015). https://doi.org/10.1007/s11356-015-5003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5003-8

Keywords

Navigation