Skip to main content

Advertisement

Log in

Biochar efficiency in pesticides sorption as a function of production variables—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biochar is a stabilized, carbon-rich by-product derived from pyrolysis of biomass. Recently, biochar has received extensive attentions because of its multi-functionality for agricultural and environmental applications. Biochar can contribute to sequestration of atmosphere carbon, improvement of soils quality, and mitigation of environmental contaminations. The capability of biochar for specific application is determined by its properties which are predominantly controlled by source material and pyrolysis route variables. The biochar sorption potential is a function of its surface area, pores volume, ash contents, and functional groups. The impacts of each production factors on these characteristics of biochar need to be well-understood to design efficient biochars for pesticides removal. The effects of biomass type on biochar sorptive properties are determined by relative amounts of its lingo-cellulosic compounds, minerals content, particles size, and structure. The highest treatment temperature is the most effective pyrolysis factor in the determination of biochar sorption behavior. The expansion of micro-porosity and surface area and also increase of biochar organic carbon content and hydrophobicity mostly happen by pyrolysis peak temperature rise. These changes make biochar suitable for immobilization of organic contaminants. Heating rate, gas pressure, and reaction retention time after the pyrolysis temperatures are sequentially important pyrolysis variables effective on biochar sorptive properties. This review compiles the available knowledge about the impacts of production variables on biochars sorptive properties and discusses the aging process as the main factor in post-pyrolysis alterations of biochars sorption capacity. The drawbacks of biochar application in the environment are summarized as well in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe I, Iwasaki S, Iwata Y, Kominami H, Kera Y (1998) Relationship between production method and adsorption property of charcoal. Tanso 185:277–284. doi:10.7209/tanso.1998.277

    Article  CAS  Google Scholar 

  • Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101:72–78. doi:10.1016/j.jaap.2013.02.010

    Article  CAS  Google Scholar 

  • Allen SJ, Whitten L, McKay G (1998) Production and characterization of activated carbons: a review. Dev Chem 6:231–261. doi:10.1002/apj.5500060501/abstract

    Google Scholar 

  • Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. doi:10.1016/j.biortech.2012.10.150

    Article  CAS  Google Scholar 

  • Bansal RC, Goyal M (2005) Activated carbon and its surface structure, activated carbon adsorption. CRC Press, pp 501

  • Barceló D (1997) Trace determination of pesticides and their degradation products in water (BOOK REPRINT) (Google eBook), pp 556

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. doi:10.1016/j.envpol.2011.07.023

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, De Nys R (2011) Algal biochar-production and properties. Bioresour Technol 102:1886–1891. doi:10.1016/j.biortech.2010.07.106

    Article  CAS  Google Scholar 

  • Boateng AA (2007) Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass. Ind Eng Chem Res 46:8857–8862. doi:10.1021/ie071054l

    Article  CAS  Google Scholar 

  • Bridgwater A (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102. doi:10.1016/S1385-8947(02)00142-0

    Article  CAS  Google Scholar 

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate‐occluded black carbon in soil. Eur J Soil Sci 57:539–546. doi:10.1111/j.1365-2389.2006.00807

    Article  Google Scholar 

  • Brodowski S, Amelung W, Haumaier L, Zech W (2007) Black carbon contribution to stable humus in german arable soils. Geoderma 139:220–228. doi:10.1016/j.geoderma.2007.02.004

    Article  CAS  Google Scholar 

  • Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37:321–333. doi:10.1016/j.orggeochem.2005.10.008

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. doi:10.1016/j.biortech.2010.02.052

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. doi:10.1021/es803092k

    Article  CAS  Google Scholar 

  • Cetin E, Moghtaderi B, Gupta R, Wall TF (2004) Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83:2139–2150. doi:10.1016/j.fuel.2004.05.008

    Article  CAS  Google Scholar 

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133. doi:10.1016/j.chemosphere.2009.02.004

    Article  CAS  Google Scholar 

  • Chen B, Li Y, Guo Y, Zhu L, Schnoor JL (2008a) Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles. Environ Sci Technol 42:1517–1523. doi:10.1021/es7023725

    Article  CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008b) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143. doi:10.1021/es8002684

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723. doi:10.1016/j.biortech.2010.08.067

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488. doi:10.1016/j.orggeochem.2006.06.022

    Article  CAS  Google Scholar 

  • Cheng D, Yu J, Wang T, Chen W, Guo P (2014) Adsorption characteristics and mechanisms of organochlorine pesticide DDT on farmland soils. Pol J Environ Stud 23:1527–1535

    CAS  Google Scholar 

  • Clay SA, Malo DD (2012) The influence of biochar production on herbicide sorption characteristics. In: Hasaneen MN (ed) Herbicides- properties, synthesis and control of weeds. InTech, New York, pp 59–74

    Google Scholar 

  • Cohen-Ofri I, Popovitz‐Biro R, Weiner S (2007) Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy. Chem Eur J 13:2306–2310. doi:10.1002/chem.200600920

    Article  CAS  Google Scholar 

  • Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MT, Koelmans AA, van Noort PC (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895. doi:10.1021/es050191b

    Article  CAS  Google Scholar 

  • Cox L, Cecchi A, Celis R, Hermosín MDC, Koskinen WC, Cornejo J (2001) Effect of exogenous carbon on movement of simazine and 2, 4-D in soils. Soil Sci Soc Am J 65:1688–1695. doi:10.2136/sssaj2001.1688

    Article  CAS  Google Scholar 

  • Dechene A, Rosendahl I, Laabs V, Amelung W (2014) Sorption of polar herbicides and herbicide metabolites by biochar-amended soil. Chemosphere 109:180–186. doi:10.1016/j.chemosphere.2014.02.010

    Article  CAS  Google Scholar 

  • Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72:243–248. doi:10.1016/j.jaap.2004.07.003

    Article  CAS  Google Scholar 

  • Denyes MJ, Langlois VS, Rutter A, Zeeb BA (2012) The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci Total Environ 437:76–82. doi:10.1016/j.scitotenv.2012.07.081

    Article  CAS  Google Scholar 

  • Dolaptsoglou C, Karpouzas DG, Menkissoglu-Spiroudi U, Eleftherohorinos I, Voudrias EA (2007) Influence of different organic amendments on the degradation, metabolism, and adsorption of terbuthylazine. J Environ Qual 36:1793–1802. doi:10.2134/jeq2006.0388

    Article  CAS  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology, London, pp 13–32

  • Evangelou MW, Fellet G, Ji R, Schulin R (2015) Phytoremediation and biochar application as an amendment. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation, Springer International Publishing, pp 253–263. doi:10.1007/978-3-319-10395-2_17

  • Fernández Y, Menéndez J (2011) Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes. J Anal Appl Pyrolysis 91:316–322. doi:10.1016/j.jaap.2011.03.010

    Article  CAS  Google Scholar 

  • Ferrio JP, Alonso N, López JB, Araus JL, Voltas J (2006) Carbon isotope composition of fossil charcoal reveals aridity changes in the NW Mediterranean Basin. Glob Chang Biol 12:1253–1266. doi:10.1111/j.1365-2486.2006.01170

    Article  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633. doi:10.2134/agronj2009.0083

    Article  CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526. doi:10.1002/elsc.200520098

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Goldberg ED (1985) Black carbon in the environment: properties and distribution. Environ Sci Technol (USA), pp 198

  • Graber ER, Tsechansky L, Khanukov J, Oka Y (2011) Sorption, volatilization, and efficacy of the fumigant 1, 3-dichloropropene in a biochar-amended soil. Soil Sci Soc Am J 75:1365–1373. doi:10.2136/sssaj2010.0435

    Article  CAS  Google Scholar 

  • Graber ER, Tsechansky L, Gerstl Z, Lew B (2012) High surface area biochar negatively impacts herbicide efficacy. Plant Soil 353:95–106. doi:10.1007/s11104-011-1012-7

    Article  CAS  Google Scholar 

  • Guo J, Lua AC (1998) Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. J Anal Appl Pyrolysis 46:113–125. doi:10.1016/S0165-2370(98)00074-6

    Article  CAS  Google Scholar 

  • Gupta AK, Lilley DG (2003) Thermal destruction of wastes and plastics. Plast Environ 629–696. doi:10.1002/0471721557

  • Hager AH, Nordby D (2007) Weed control for corn, soybeans and sorghum. In: Overmier M (ed) Illinois agricultural pest management. University of Illinois Extension, Urbana, pp 21–108

    Google Scholar 

  • Hagner M, Penttinen OP, Tiilikkala K, Setälä H (2013) The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation. Eur J Soil Biol 58:1–7. doi:10.1016/j.ejsobi.2013.05.002

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V et al (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838. doi:10.1021/es203984k

    Article  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830. doi:10.1016/j.orggeochem.2004.03.003

    Article  CAS  Google Scholar 

  • Hammes K, Torn MS, Lapenas AG, Schmidt MW (2008) Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5:1339–1350. doi:10.5194/bg-5-1339-2008

    Article  CAS  Google Scholar 

  • Hilton HW, Yuen QH (1963) Adsorption of several preemergence herbicides by Hawaiian sugar cone soils. J Agric Food Chem 11:230–234

    Article  CAS  Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Acta 71:3432–3445. doi:10.1016/j.gca.2007.02.023

    Article  CAS  Google Scholar 

  • Huang W, Peng PA, Yu Z, Fu J (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18:955–972. doi:10.1016/S0883-2927(02)00205-6

    Article  CAS  Google Scholar 

  • James G, Sabatini DA, Chiou CT, Rutherford D, Scott AC, Karapanagioti HK (2005) Evaluating phenanthrene sorption on various wood chars. Water Res 39:549–558. doi:10.1016/j.watres.2004.10.015

    Article  CAS  Google Scholar 

  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621. doi:10.5194/bg-11-6613-2014

    Article  Google Scholar 

  • Joseph S, Downie A, Munroe P, Crosky A, Lehmann J (2007) Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility; A review of the materials science, Proceedings of the Australian Combustion Symposium, pp 130–133

  • Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. In: Reviews of environmental contamination and toxicology, Springer New York, pp 149–217

  • Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44:6189–6195. doi:10.1021/es1014423

    Article  CAS  Google Scholar 

  • Katyal S, Thambimuthu K, Valix M (2003) Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renew Energy 28:713–725. doi:10.1016/S0960-1481(02)00112-X

    Article  CAS  Google Scholar 

  • Kawamoto K, Ishimaru K, Imamura Y (2005) Reactivity of wood charcoal with ozone. J Wood Sci 51:66–72. doi:10.1007/s10086-003-0616-9

    Article  CAS  Google Scholar 

  • Keiluweit M, Kleber M, Sparrow MA, Simoneit BR, Prahl FG (2012) Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environ Sci Technol 46:9333–9341. doi:10.1021/es302125k

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V et al (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000. doi:10.2134/jeq2011.0070

    Article  CAS  Google Scholar 

  • Kookana RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Soil Res 48:627–637. doi:10.1071/SR10007

    Article  CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    Article  CAS  Google Scholar 

  • Ladygina N, Rineau F (2013) Biochar and soil Biota, CRC Press, pp 278

  • Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels Bioprod Biorefin 3:547–562. doi:10.1002/bbb.169

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge, New York, p 976

    Google Scholar 

  • Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics, Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Book  Google Scholar 

  • Lehmann J, Lan Z, Hyland C, Sato S, Solomon D, Ketterings QM (2005) Long-term dynamics of phosphorus forms and retention in manure-amended soils. Environ Sci Technol 39:6672–6680. doi:10.1021/es047997g

    Article  CAS  Google Scholar 

  • Li R, Wen B, Zhang S, Pei Z, Shan X (2009) Influence of organic amendments on the sorption of pentachlorophenol on soils. J Environ Sci 21:474–480. doi:10.1016/S1001-0742(08)62294-9

    Article  CAS  Google Scholar 

  • Lima IM, Marshall WE (2005) Granular activated carbons from broiler manure: physical, chemical and adsorptive properties. Bioresour Technol 96:699–706. doi:10.1016/j.biortech.2004.06.021

    Article  CAS  Google Scholar 

  • Lou L, Wu B, Wang L, Luo L, Xu X, Hou J et al (2011) Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar. Bioresour Technol 102:4036–4041. doi:10.1016/j.biortech.2010.12.010

    Article  CAS  Google Scholar 

  • Lua AC, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrolysis 72:279–287. doi:10.1016/j.jaap.2004.08.001

    Article  CAS  Google Scholar 

  • Lucchini P, Quilliam RS, DeLuca TH, Vamerali T, Jones DL (2014) Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environ Sci Pollut Res 21:3230–3240. doi:10.1007/s11356-013-2272-y

    Article  CAS  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379. doi:10.1111/j.1365-2486.2009.02044

    Article  Google Scholar 

  • Mankasingh U, Choi PC, Ragnarsdottir V (2011) Biochar application in a tropical, agricultural region: a plot scale study in Tamil Nadu, India. Appl Geochem 26:S218–S221. doi:10.1016/j.apgeochem.2011.03.108

    Article  CAS  Google Scholar 

  • Manna S, Singh N (2015) Effect of wheat and rice straw biochars on pyrazosulfuron-ethyl sorption and persistence in a sandy loam soil. J Environ Sci Health B 50:463–472. doi:10.1080/03601234.2015.1018757

    Article  CAS  Google Scholar 

  • Martin SM, Kookana RS, Van Zwieten L, Krull E (2012) Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J Hazard Mater 231:70–78. doi:10.1016/j.jhazmat.2012.06.040

    Article  CAS  Google Scholar 

  • Mesa AC, Spokas KA (2011) Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides. In: Kortekamp A (ed.) Herbicides and Environment, InTech, pp 315–340

  • Mughari AR, Vázquez PP, Galera MM (2007) Analysis of phenylurea and propanil herbicides by solid-phase microextraction and liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection. Anal Chim Acta 593:157–163. doi:10.1016/j.aca.2007.04.061

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255. doi:10.1016/j.geoderma.2011.04.021

    Article  CAS  Google Scholar 

  • Müller K, Magesan GN, Bolan NS (2007) A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agric Ecosyst Environ 120:93–116. doi:10.1016/j.agee.2006.08.016

    Article  CAS  Google Scholar 

  • Nag SK, Kookana R, Smith L, Krull E, Macdonald LM, Gill G (2011) Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 84:1572–1577. doi:10.1016/j.chemosphere.2011.05.052

    Article  CAS  Google Scholar 

  • Nakajima D, Nagame S, Kuramochi H, Sugita K, Kageyama S, Shiozaki T et al (2007) Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood. Bull Environ Contam Toxicol 79:221–225. doi:10.1007/s00128-007-9177-8

    Article  CAS  Google Scholar 

  • Nartey OD, Zhao B (2014) Biocharpreparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Adv Mater Sci Eng 2014:1–12. doi:10.1155/2014/715398

    Article  CAS  Google Scholar 

  • Nelson SD, Farmer WJ, Letey J, Williams CF (2000) Stability and mobility of napropamide complexed with dissolved organic matter in soil columns. J Environ Qual 29:1856–1862. doi:10.2134/jeq2000.00472425002900060018x

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2009) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 92:163–176. doi:10.1007/s10533-008-9248-x

    Article  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105. doi:10.1097/SS.0b013e3181981d9a

    Article  CAS  Google Scholar 

  • Ogbonnaya U, Semple KT (2013) Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy 3:349–375. doi:10.3390/agronomy3020349

    Article  CAS  Google Scholar 

  • Oleszczuk P, Jośko I, Kuśmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382. doi:10.1016/j.jhazmat.2013.05.044

    Article  CAS  Google Scholar 

  • Oliveira RS, Koskinen WC, Ferreira FA (2005) Sorption and leaching potential of acidic herbicides in Brazilian soils. J Environ Sci Health B 40:29–37. doi:10.1081/ESE-200033512

    Google Scholar 

  • Pradhan BK, Sandle NK (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37:1323–1332. doi:10.1016/S0008-6223(98)00328-5

    Article  CAS  Google Scholar 

  • Qiu M, Sun K, Jin J, Gao B, Yan Y, Han L et al (2014) Properties of the plant-and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene. Sci Rep 4:5295. doi:10.1038/srep05295

    CAS  Google Scholar 

  • Quilliam RS, Rangecroft S, Emmett BA, Deluca TH, Jones DL (2013) Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy 5:96–103. doi:10.1111/gcbb.12007

    Article  CAS  Google Scholar 

  • Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron 140:04014047. doi:10.1061/(ASCE)GT.1943-5606.0001148

    Article  CAS  Google Scholar 

  • Rice PJ, Arthur EL, Barefoot AC (2007) Advances in pesticide environmental fate and exposure assessments. J Agric Food Chem 55:5367–5376. doi:10.1021/jf063764s

    Article  CAS  Google Scholar 

  • Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep 5:9665. doi:10.1038/srep09665

    Article  CAS  Google Scholar 

  • Rodriguez-Mirasol J, Cordero T, Rodriguez JJ (1993) Preparation and characterization of activated carbons from eucalyptus kraft lignin. Carbon 31:87–95. doi:10.1016/0008-6223(93)90160-C

    Article  CAS  Google Scholar 

  • Rodríguez-Reinoso F, Marsh H (2006) Activated carbon. Activated carbon, pp 554

  • Sánchez ME, Lindao E, Margaleff D, Martínez O, Morán A (2009) Pyrolysis of agricultural residues from rape and sunflowers: production and characterization of bio-fuels and biochar soil management. J Anal Appl Pyrolysis 85:142–144. doi:10.1016/j.jaap.2008.11.001

    Article  CAS  Google Scholar 

  • Selim HM (2003) Retention and runoff losses of atrazine and metribuzin in soil. J Environ Qual 32:1058. doi:10.2134/jeq2003.1058

    Article  CAS  Google Scholar 

  • Sharma RK, Hajaligol MR (2003) Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds. J Anal Appl Pyrolysis 66:123–144. doi:10.1016/S0165-2370(02)00109-2

    Article  CAS  Google Scholar 

  • Sharma RK, Wooten JB, Baliga VL, Lin X, Geoffrey Chan W, Hajaligol MR (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482. doi:10.1016/j.fuel.2003.11.015

    Article  CAS  Google Scholar 

  • Shinogi Y, Kanri Y (2003) Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresour Technol 90:241–247. doi:10.1016/S0960-8524(03)00147-0

    Article  CAS  Google Scholar 

  • Shirvani M, Kalbasi M, Shariatmadari H, Nourbakhsh F, Najafi B (2006) Sorption–desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis. Chemosphere 65:2178–2184. doi:10.1016/j

    Article  CAS  Google Scholar 

  • Shneour EA (1966) Oxidation of graphitic carbon in certain soils. Science 151(3713):991–992. doi:10.1126/science.151.3713.991

    Article  CAS  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48:516–525. doi:10.1071/SR10058

    Article  CAS  Google Scholar 

  • Singh R, Babu JN, Kumar R, Srivastava P, Singh P, Raghubanshi AS (2015) Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecol Eng 77:324–347. doi:10.1016/j.ecoleng.2015.01.011

    Article  Google Scholar 

  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in U.S. Agricultural soils. Soil Sci Soc Am J 66:1249. doi:10.2136/sssaj2002.1249

    Article  CAS  Google Scholar 

  • Smernik RJ (2009) Biochar and sorption of organic compounds. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology, London, pp 289–300

  • Sohi S, Lopez-Capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land Water Sci Rep 5(09):17–31

    Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi:10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  • Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145. doi:10.1016/j.jaap.2011.11.018

    Article  CAS  Google Scholar 

  • Song Y, Wang F, Bian Y, Kengara FO, Jia M, Xie Z, Jiang X (2012) Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J Hazard Mater 217:391–397. doi:10.1016/j.jhazmat.2012.03.055

    Article  CAS  Google Scholar 

  • Sopeña F, Bending GD (2013) Impacts of biochar on bioavailability of the fungicide azoxystrobin: a comparison of the effect on biodegradation rate and toxicity to the fungal community. Chemosphere 91:1525–1533. doi:10.1016/j.chemosphere.2012.12.031

    Article  CAS  Google Scholar 

  • Sopeña F, Semple K, Sohi S, Bending G (2012) Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88:77–83. doi:10.1016/j.chemosphere.2012.02.066

    Article  CAS  Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manage 1(2):289–303. doi:10.4155/cmt.10.32

    Article  CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581. doi:10.1016/j.chemosphere.2009.06.053

    Article  CAS  Google Scholar 

  • Srinivasan P, Sarmah AK (2015) Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci Total Environ 502:471–480. doi:10.1016/j.scitotenv.2014.09.048

    Article  CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2007) Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem Eng J 132:267–278. doi:10.1016/j.cej.2007.01.007

    Article  CAS  Google Scholar 

  • Steffens K (2015) Modelling climate change impacts on pesticide leaching. Dissertation, Swedish University of Agricultural Sciences

  • Stenrød M (2015) Long-term trends of pesticides in Norwegian agricultural streams and potential future challenges in northern climate. Acta Agric Scand Sect B Soil Pant Sci 65:199–216. doi:10.1080/09064710.2014.977339

    Google Scholar 

  • Sun K, Keiluweit M, Kleber M, Pan Z, Xing B (2011) Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresour Technol 102:9897–9903. doi:10.1016/j.biortech.2011.08.036

    Article  CAS  Google Scholar 

  • Sun K, Gao B, Ro KS, Novak JM, Wang Z, Herbert S, Xing B (2012) Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environ Pollut 163:167–173. doi:10.1016/j.envpol.2011.12.015

    Article  CAS  Google Scholar 

  • Sun K, Kang M, Zhang Z, Jin J, Wang Z, Pan Z et al (2013) Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environ Sci Technol 47:11473–11481. doi:10.1021/es4026744

    Article  CAS  Google Scholar 

  • Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y et al (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578. doi:10.1016/j.cej.2013.10.081

    Article  CAS  Google Scholar 

  • Swiatkowski A, Pakula M, Biniak S, Walczyk M (2004) Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead (II) ions. Carbon 42:3057–3069. doi:10.1016/j.carbon.2004.06.043

    Article  CAS  Google Scholar 

  • Taha SM, Amer ME, Elmarsafy AE, Elkady MY (2014) Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. J Environ Chem Eng 2:2013–2025. doi:10.1016/j.jece.2014.09.001

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85. doi:10.1016/j.chemosphere.2014.12.058

    Article  CAS  Google Scholar 

  • Tatarková V, Hiller E, Vaculík M (2013) Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicol Environ Saf 92:215–221. doi:10.1016/j.ecoenv.2013.02.005

    Article  CAS  Google Scholar 

  • Trakal L, Komárek M, Száková J, Zemanová V, Tlustoš P (2011) Biochar application to metal-contaminated soil: evaluating of cd, cu, pb and zn sorption behavior using single-and multi-element sorption experiment. Plant Soil Environ 57:372–380

    CAS  Google Scholar 

  • Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2011) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80:935–940. doi:10.1016/j.jhazmat.2011.03.063

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2009) Glossary of technical terms: U.S. Environmental Protection Agency, access date May 24, 2011. http://toxics.usgs.gov/definitions/kow.html

  • Verheijen F, Jeffery S, Bastos AC, Van der Velde M, Diafas I (2010) Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, pp 162. doi:10.2788/472

  • Verheijen FGA, Graber ER, Ameloot N, Bastos AC, Sohi S, Knicker H (2014) Biochars in soils: new insights and emerging research needs. Eur J Soil Sci 65:22–27. doi:10.1111/ejss.12127

    Article  Google Scholar 

  • Wang SY, Tsai MH, Lo SF, Tsai MJ (2008) Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by makino bamboo charcoal. Bioresour Technol 99:7027–7033. doi:10.1016/j.biortech.2008.01.014

    Article  CAS  Google Scholar 

  • Wang TT, Cheng J, Liu XJ, Jiang W, Zhang CL, Yu XY (2012) Effect of biochar amendment on the bioavailability of pesticide chlorantraniliprole in soil to earthworm. Ecotoxicol Environ Saf 83:96–101. doi:10.1016/j.ecoenv.2012.06.012

    Article  CAS  Google Scholar 

  • Wang D, Mukome FN, Yan D, Wang H, Scow KM, Parikh SJ (2015) Phenylurea herbicide sorption to biochars and agricultural soil. J Environ Sci Health B 50(8):544–551. doi:10.1080/03601234.2015.1028830

    Article  CAS  Google Scholar 

  • Wanner U, Führ F, Burauel P (2005) Influence of the amendment of corn straw on the degradation behaviour of the fungicide dithianon in soil. Environ Pollut 133:63–70. doi:10.1016/j.envpol.2004.04.013

    Article  CAS  Google Scholar 

  • Wauchope RD, Yeh S, Linders JBHJ, Kloskowski R, Tanaka K, Rubin B, Unsworth JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci 58:419–445. doi:10.1002/ps.489/full

    Article  CAS  Google Scholar 

  • White PM, Potter TL, Lima IM (2015) Sugarcane and pinewood biochar effects on activity and aerobic soil dissipation of metribuzin and pendimethalin. Ind Crop Prod 74:737–744. doi:10.1016/j.indcrop.2015.04.022

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:1–9. doi:10.1038/ncomms1053

    Article  CAS  Google Scholar 

  • Wu M, Feng Q, Sun X, Wang H, Gielen G, Wu W (2015) Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Sci Rep 5:10001. doi:10.1038/srep10001

    Article  CAS  Google Scholar 

  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45:939–969. doi:10.1080/10643389.2014.924180

    Article  CAS  Google Scholar 

  • Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731. doi:10.1016/j.scitotenv.2011.11.005

    Article  CAS  Google Scholar 

  • Yamane VK, Green RE (1972) Adsorption of ametryn and atrazine on an oxisol, montmorillonite and biochar in relation to pH and solubility effects. Soil Sci Soc Am Proc 36:58–64. doi:10.2136/sssaj1972.03615995003600010013x

    Article  Google Scholar 

  • Yang Y, Sheng G (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37:3635–3639. doi:10.1021/es034006a

    Article  CAS  Google Scholar 

  • Yang Y, Sheng G, Huang M (2006) Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 354:170–178. doi:10.1016/j.scitotenv.2005.01.026

    Article  CAS  Google Scholar 

  • Yang XB, Ying GG, Peng PA, Wang L, Zhao JL, Zhang LJ, Yuan P et al (2010) Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58:7915–7921. doi:10.1021/jf1011352

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman AR et al (2012) Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater 209:408–413. doi:10.1016/j.jhazmat.2012.01.046

    Article  CAS  Google Scholar 

  • Yargicoglu EN, Reddy KR (2014) Evaluation of PAH and metal contents of different biochars for use in climate change mitigation systems. In: Proceedings of International Conference on Sustainable Infrastructure (ICSI), pp. 114–125. doi:10.1061/9780784478745.011

  • Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268. doi:10.1016/j.wasman.2014.10.029

    Article  CAS  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2014) The effects of feedstock sources and pyrolytic temperature on biochars sorptive characteristics. Appl Mech Mater 567:150–154. doi:10.4028/www.scientific.net/AMM.567.150

    Article  CAS  Google Scholar 

  • Yoshida T, Antal MJ Jr (2009) Sewage sludge carbonization for terra preta applications. Energy Fuel 23:5454–5459. doi:10.1021/ef900610k

    Article  CAS  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 54:8545–8550. doi:10.1021/jf061354y

    Article  CAS  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671. doi:10.1016/j.chemosphere.2009.04.001

    Article  CAS  Google Scholar 

  • Yu X, Pan L, Ying G, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci 22:615–620. doi:10.1016/S1001-0742(09)60153-4

    Article  CAS  Google Scholar 

  • Yu XY, Mu CL, Gu C, Liu C, Liu XJ (2011) Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere 85:1284–1289. doi:10.1016/j.chemosphere.2011.07.031

    Article  CAS  Google Scholar 

  • Yuan H, Lu T, Huang H, Zhao D, Kobayashi N, Chen Y (2015) Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J Anal Appl Pyrolysis 112:284–289. doi:10.1016/j.jaap.2015.01.010

    Article  CAS  Google Scholar 

  • Zanella R, Adaime MB, Peixoto SC, Friggi CDA, Prestes OD, Machado SL et al (2011) Herbicides persistence in rice paddy water in Southern Brazil. In: Hasaneen MN (ed) Herbicides- mechanisms and mode of action. InTech, New York, pp 183–204

    Google Scholar 

  • Zhang H, Lin K, Wang H, Gan J (2010) Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158:2821–2825. doi:10.1016/j.envpol.2010.06.025

    Article  CAS  Google Scholar 

  • Zhang P, Sun H, Yu L, Sun T (2013) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater 244:217–224. doi:10.1016/j.jhazmat.2012.11.046

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256:1–9. doi:10.1016/j.jhazmat.2013.04.015

    Google Scholar 

  • Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181:121–126. doi:10.1016/j.jhazmat.2010.04.103

    Article  CAS  Google Scholar 

  • Zhou Z, Shi D, Qiu Y, Sheng GD (2009) Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environ Pollut 158:201–206. doi:10.1016/j.envpol.2009.07.020

    Article  CAS  Google Scholar 

  • Zielińska A, Oleszczuk P (2015a) Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene. Bioresour Technol 192:618–626. doi:10.1016/j.biortech.2015.06.032

    Article  CAS  Google Scholar 

  • Zielińska A, Oleszczuk P (2015b) The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass Bioenergy 75:235–244. doi:10.1016/j.biombioe.2015.02.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Education, Malaysia for providing financial support (Grant No. 0153AB-J13) for this research under MyRA grant scheme. Also, the technical supports from Federal Land Consolidation and Rehabilitation Authority (FELCRA) Malaysia is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Yavari.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, S., Malakahmad, A. & Sapari, N.B. Biochar efficiency in pesticides sorption as a function of production variables—a review. Environ Sci Pollut Res 22, 13824–13841 (2015). https://doi.org/10.1007/s11356-015-5114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5114-2

Keywords

Navigation