Skip to main content
Log in

Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l−1), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l−1 of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29:173–191

    Article  Google Scholar 

  • Allen JG, Beutel MW, Call DR, Fischer AM (2010) Effects of oxygenation on ammonia oxidation potential and microbial diversity in sediment from surface-flow wetland mesocosms. Bioresour Technol 101:1389–1392

    Article  CAS  Google Scholar 

  • Anderson RC, Liberta AE, Dickman LA (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64:111–117

    Article  Google Scholar 

  • Bachand PAM, Horne AJ (2000a) Denitrification in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study. Ecol Eng 14:9–15

    Article  Google Scholar 

  • Bachand PAM, Horne AJ (2000b) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol Eng 14:17–32

    Article  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Article  Google Scholar 

  • Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Article  Google Scholar 

  • Bohrer KE, Friese CF, Amon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337

    Article  Google Scholar 

  • Brown M, Bledsoe C (1996) Spatial and temporal dynamics Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715

    Article  Google Scholar 

  • Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 68:1157–1164

    Article  CAS  Google Scholar 

  • Cantelmo AJJ, Ehrenfeld JG (1999) Effects of microtopography on mycorrhizal infection in Atlantic white cedar (Chamaecyparis thyoides (L.) Mills.). Mycorrhiza 8:175–180

    Article  Google Scholar 

  • Cooke JC, Lefor MW (1998) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor Ecol 6:214–222

    Article  Google Scholar 

  • Dolinar N, Gaberščik A (2010) Mycorrhizal colonization and growth of Phragmites australis in an intermittent wetland. Aquat Bot 93:93–98

    Article  Google Scholar 

  • Drizo A, Frost CA, Grace J, Smith KA (2000) Phosphate and ammonium distribution in a pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate. Water Res 34:2483–2490

    Article  CAS  Google Scholar 

  • Elser J, Marzolf E, Goldman C (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the fresh-waters of North-America—a review and critique of experimental enrichments. Can J Fish Aquat Sci 47:1468–1477

    Article  CAS  Google Scholar 

  • Gale PM, Redely KR, Graetz DA (1993) Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms. Water Environ Res 65:162–168

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol 108:236–245

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 117:109–117

    Article  Google Scholar 

  • Gray S, Kinross J, Read P, Marland A (2000) The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems for waste treatment. Water Res 34:2183–2190

    Article  CAS  Google Scholar 

  • He Q, Mankin KR (2003) Performance variations of COD and nitrogen removal by vegetated submerged bed wetlands. J Am Water Resour Assoc 38:1679–1689

    Article  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Huang J, Reneau RBJ, Hagedorn C (2000) Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Res 34:2582–2588

    Article  CAS  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC/Lewis, Boca Raton

    Google Scholar 

  • Khan A (1974) Occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. J Gen Microbiol 81:7–14

    Article  Google Scholar 

  • Korboulewsky N, Wang R, Baldy V (2012) Purification processes involved in sludge treatment by a vertical flow wetland system: focus on the role of the substrate and plants on N and P removal. Bioresour Technol 105:9–14

    Article  CAS  Google Scholar 

  • Kuschk P, Wiessner A, Kappelmeyer U, Weissbrodt E, Kästner M, Stottmeister U (2003) Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res 37:4236–4242

    Article  CAS  Google Scholar 

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    Article  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008a) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147

    Article  CAS  Google Scholar 

  • Lingua G, Gamalero E, Fusconi A, Lemanceau P, Berta G (2008b) Colonization of plant roots by pseudomonads and AM fungi: a dynamic phenomenon, affecting plant growth and health. In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 601–626

    Chapter  Google Scholar 

  • Marschner H (1995) Mineral nutrition in higher plants. 2nd Edition. Academic, London

  • Mejstrik V (1984) Ecology of vesicular arbuscular mycorrhizae of the Schoenetum-nigricantis bohemicum community in the Grabanowsky swamps reserve. Sov J Ecol 15:18–23

    Google Scholar 

  • Mosse B, Stribley DP, LeTacon F (1981) Ecology of mycorrhizasand mycorrhizal fungi. In: Alexander M (ed) Advances inmicrobial ecology. Plenum Press, New York, pp 137–210

  • Oliveira RS, Dodd JC, Castro PML (2001) The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza 10:241–247

    Article  CAS  Google Scholar 

  • Phipps RG, Crumpton WG (1994) Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads. Ecol Eng 3:399–408

    Article  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  Google Scholar 

  • Ragupathy S, Mohankumar V, Mahadevan A (1990) Occurrence of vesicular-arbuscular mycorrhizae in tropical hydrophytes. Aquat Bot 36:287–291

    Article  Google Scholar 

  • Reddy KR, Patrick WH (1984) Nitrogen transformations and loss in flooded soils and sediments. Crit Rev Environ Control 13:273–309

    Article  CAS  Google Scholar 

  • Reilly JF, Horne AJ, Miller CD (2000) Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge. Ecol Eng 14:33–47

    Article  Google Scholar 

  • Rousseau DPL, Vanrolleghem PA, De Pauw N (2004) Constructed wetlands in Flanders: a performance analysis. Ecol Eng 23:151–163

    Article  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampò S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Mycorrhizae physiology and genetics. INRA, Paris, pp 217–221

    Google Scholar 

  • Turner SD, Friese CF (1998) Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen. Restor Ecol 6:44–51

    Article  Google Scholar 

  • Turner SD, Amon JP, Schneble RM, Friese CF (2000) Mycorrhizal fungi associated with plants in ground-water fed wetlands. Wetlands 20:200–204

    Article  Google Scholar 

  • Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was part of the project “Sviluppo di sistemi di abbattimento dell’inquinamento tramite lagunaggio” and partly funded by AMIAS (Azienda Multiservizi Idrici e Ambientali Scrivia) and by Cassa di Risparmio di Alessandria.

The authors wish to thank Mybasol s.r.l. (Alessandria, Italy) for the support during the experimental work and Dr. Elisa Gamalero for kindly providing Pseudomonas fluorescens PF7 and critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella Berta.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 4538 kb)

Fig. S2

(DOCX 673 kb)

Table 1S

(DOCX 21 kb)

Table 2S

(DOCX 27 kb)

Table 3S

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lingua, G., Copetta, A., Musso, D. et al. Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration. Environ Sci Pollut Res 22, 18616–18625 (2015). https://doi.org/10.1007/s11356-015-5502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5502-7

Keywords

Navigation