Skip to main content
Log in

Proposal for management and alkalinity transformation of bauxite residue in China

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alekseev AI (1985) Calcium hydroaluminates and hydrogarnets: synthesis, properties, and application. LGU, Leningrad

    Google Scholar 

  • Alekseev AI, Barinova LD, Rogacheva NP, Kulinich OV (1984) Thermodynamic and experimental analysis of equilibriums in the sodium oxide calcium oxide carbon dioxide water system. Zh Prikl Khim 57:1256–1261

    CAS  Google Scholar 

  • Banning NC, Phillips IR, Jones DL, Murphy DV (2011) Development of microbial diversity and functional potential in bauxite residue sand under rehabilitation. Restor Ecol 19(101):78–87

    Article  Google Scholar 

  • Banning NC, Sawada Y, Phillips IR, Murphy DV (2014) Amendment of bauxite residue sand can alleviate constraints to plant establishment and nutrient cycling capacity in a water-limited environment. Ecol Eng 62:179–187

    Article  Google Scholar 

  • Bi SW (2006) Technics of alumina production. Chemical industry press, Beijing (in Chinese)

    Google Scholar 

  • Blenkinsop RD, Currell BR, Midgley HG, Parsonage JR (1985) The carbonation of high alumina cement, Part I. Cem Concr Res 15:276–284

    Article  CAS  Google Scholar 

  • Borra CR, Pontikes Y, Binnemans K, Gerven TV (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng. doi:10.1016/j.mineng.2015.01.005

    Google Scholar 

  • Chen YM, Nie JX (2007) Adorsption of SO2 from flue gas with wastewater in red mud. Nonferrous Metals 59(4):153–155 (in Chinese)

    CAS  Google Scholar 

  • Clark MW, Johnston M, Reichelt-Brushett AJ (2015) Comparison of several different neutralisations to a bauxite refinery residue: potential effectiveness environmental ameliorants. Appl Geochem 56:1–10

    Article  CAS  Google Scholar 

  • Cooling DJ, Hay PS, Guifoyle L (2002) Carbonation of bauxite residue. In: Proceedings of the 6th International Alumina Quality Workshop, Brisbane

  • Couperthwaite SJ, Johnstone DW, Mullett ME, Taylor KJ, Millar GJ (2014) Minimization of bauxite residue neutralization products using nanofiltered seawater. Ind Eng Chem Res 53(10):3787–3794

    Article  CAS  Google Scholar 

  • Courtney R, Harrington T, Byrne KA (2013) Indicators of soil formation in restored bauxite residues. Ecol Eng 58:63–68

    Article  Google Scholar 

  • Courtney R, Harris JA, Pawlett M (2014) Microbial community composition in a rehabilitated bauxite residue disposal area: a case study for improving microbial community composition. Restor Ecol 22(6):798–805

    Article  Google Scholar 

  • Fu GF, Tian FQ, Quan K (2005) Study on digestion of Chinese middle/low grade bauxite in lime Bayer process. J Northeast Univ (Nat Sci) 26(11):1093–1095 (in Chinese)

    CAS  Google Scholar 

  • Gao Y (2014) Study on two-stage acid leaching process of alumina and iron oxide from guangxi pingguo alumina corporation produced red mud. Dissertation, Taiyuan University of Science and Technology (in Chinese)

  • Gherardi MJ, Rengel Z (2003) Deep banding improves residual effectiveness of manganese fertiliser for bauxite residue revegetation. Soil Res 41(7):1273–1282

    Article  CAS  Google Scholar 

  • Gräfe M, Klauber C (2011) Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108(1–2):46–59

    Article  Google Scholar 

  • Gu MM (2014) Research on key technology of comprehensive utilization of the red mud. Light Met 4:10–16 (in Chinese)

    Google Scholar 

  • Gu HN, Wang N, Liu SR, Tian YJ (2012) Study on material composition and particles characteristics of red mud from the sintering alumina process. Rock Mine Anal 2:312–317 (in Chinese)

    Google Scholar 

  • Guilfoyle L, Hay P, Cooling D (2005) Use of flue gas for carbonation of bauxite residue. In: Proceedings of the 7th International Alumina Guality Workshop, Perth, Australia

  • Hamdy MK, Williams FS (2001) Bacterial amelioration of bauxite residue waste of industrial alumina plants. J Ind Microbiol Biotechnol 27(4):288–233

    Article  Google Scholar 

  • Hanahan C, Mcconchie D, Creelman R (2004) Chemistry of seawater neutralization of bauxite refinery residues (red mud). Environ Eng Sci 21(2):125–138

    Article  CAS  Google Scholar 

  • Ji ZJ, Li SQ, Zhang CC, Tang XH (2014) Experimental studies on sodium removal of red mud by CO2. J Taiyuan Univ Technol 45(1):42–46 (in Chinese)

    Google Scholar 

  • Jiang WC (2009) Study on recovering iron and alumina from Bayer red mud with lime soda sinter. Dissertation, Huazhong Univ Sci Technol

  • Jiang YF, Liu Y, Lin CX (2007) Chemistry and mineralogy of red mud and its utilization in Zhengzhou Alumina Refinery. Light Met 10:18–21 (in Chinese)

    Google Scholar 

  • Johnston M, Clark MW, McMahon P, Ward N (2010) Alkalinity conversion of bauxite refinery residues by neutralization. J Hazard Mater 182(1–3):710–715

    Article  CAS  Google Scholar 

  • Jones BEH, Haynes RJ, Phillips IR (2011) Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand. Environ Sci Pollut Res 18(2):199–211

    Article  CAS  Google Scholar 

  • Kirwan LJ, Hartshorn A, McMonagle JB, Fleming L, Funnell D (2013) Chemistry of bauxite residue neutralisation and aspects to implementation. Int J Miner Process 119:40–50

    Article  CAS  Google Scholar 

  • Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108(1–2):11–32

    Article  CAS  Google Scholar 

  • Krishna P, Babu AG, Reddy MS (2014) Bacterial diversity of extremely alkaline bauxite residue site of alumina industrial plant using culturable bacteria and residue 16S rRNA gene clones. Extremophiles 18(4):665–676

    Article  CAS  Google Scholar 

  • Li B (2002) Quantitative phase analysis of red mud of Bayer process by rietveld full-pattern fitting method. J Instrum Anal 6:68–72 (in Chinese)

    Google Scholar 

  • Li XB, Liu XM, Liu GH, Peng ZH, Liu YX (2004) Study and application of intensified sintering process for alumina production. Chin Nonferrous Met 14(6):1031–1036 (in Chinese)

    CAS  Google Scholar 

  • Li JQ, Long Q, Xu BJ (2009) Research on alumina recovery from red mud by sintering process. Light Met 11:11–13 (in Chinese)

    CAS  Google Scholar 

  • Li R, Shi F, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environ Exp Bot 68(1):66–74

    Article  CAS  Google Scholar 

  • Liao CZ, Zeng LM, Shih K (2015) Quantitative X-ray diffraction (QXRD) analysis for revealing thermal transformations of red mud. Chemosphere 131:171–177

    Article  CAS  Google Scholar 

  • Lin JF, Li YD, Han MF, Yi YL, Gao LS, Dai YZ (2013) Capture of carbon dioxide with red mud. Environ Protec Chem Ind 33(6):549–552 (in Chinese)

    CAS  Google Scholar 

  • Liu C (2007) The feasibility investigation to the concrete made by the red mud for Zhongzhou aluminium factory. Dissertation, Henan Polytech Univ (in Chinese)

  • Liu ZB, Li HX (2015) Metallurgical process for valuable elements recovery from red mud-a review. Hydrometallurgy 155:29–43

    Article  CAS  Google Scholar 

  • Liu YJ, Naidu R (2014) Hidden values in bauxite residue (red mud): recovery of metals. Waste Manag 34(14):2662–2673

    Article  CAS  Google Scholar 

  • Liu PW, Zhang LH, Zhang XF, Pei Y, Li GK (2000) Theoretical basis of new technology in predesilicification and bauxite dressing-Bayer process and industrial technique of new technology. J Chem Ind Eng (China) 51(6):734–739 (in Chinese)

    CAS  Google Scholar 

  • Liu LR, Aye L, Lu ZW, Zhang PH (2006) Analysis of the overall energy intensity of alumina refinery process using unit process energy intensity and product ratio method. Energy 31(8):1167–1176

    Article  CAS  Google Scholar 

  • Liu WC, Sun SY, Zhang L, Jahanshahi S, Yang JK (2012) Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe. Miner Eng 39:213–218

    Article  Google Scholar 

  • Liu FX, An YY, Tang SG (2014a) Submerging test for dry stockpiling and consolidating red mud at the field. Sci Tech Eng 27:264–267

    Google Scholar 

  • Liu W, Chen X, Li W, Yu Y, Yan K (2014b) Environmental assessment, management and utilization of red mud in China. J Clean Prod 84:606–610

    Article  CAS  Google Scholar 

  • Lockwood CL, Stewart DI, Mortimer RJG, Mayes WM, Jarvis AP, Gruiz K, Burke LT (2015) Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter. Environ Sci Pollut Res 22(14):10800–10810

    Article  CAS  Google Scholar 

  • Lu GL, Chi SJ, Bi SW (2010) Leaching of alumina and iron oxide from red mud. J Mater Metal (1):31–34, 67. (in Chinese)

  • MEC (Minerals Education Coalition) (2013) Alumina. Minerals education coalition. http://www.mineralseducationcoalition.org/minerals/aluminum. Accessed 10 May 2015

  • Mei XG, Sun ZY, Zuo WL (1997) Development on removal of Na from bauxite residue in foreign countries. Light Met 7:21–25 (in Chinese)

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Bio Technol 7:47–59

    Article  CAS  Google Scholar 

  • Menzies NW, Fulton IM, Morrell WJ (2004) Seawater neutralization of alkaline bauxite residue and implications for revegetation. J Environ Qual 33(5):1877–1884

    Article  CAS  Google Scholar 

  • Menzies NW, Fulton IM, Kopittke RA, Kopittke PM (2009) Fresh water leaching of alkaline bauxite residue after sea water neutralization. J Environ Qual 38(5):2050–2057

    Article  CAS  Google Scholar 

  • Nan XL, Zhang TG, Liu Y, Dou ZH, Zhao QY, Jiang XL (2009) The main categories of red mud and its influence on the environment in China. Chin J Process Eng S1:459–464 (in Chinese)

    Google Scholar 

  • Nan XL, Zhang TG, Wu YQ, Dou ZH (2010) A study on absorption of low-concentration SO2 by Bayer red mud. J Northeast Univ (Nat Sci) 31(7):986–989

    CAS  Google Scholar 

  • NBSC (National Bureau of Statistics of the People’s Republic of China) (2013) Alumina production of China in 2013. http://data.stats.gov.cn/search/keywordlist. Accessed 12 May 2015

  • NBSC (National Bureau of Statistics of the People’s Republic of China) (2015) Alumina production of China in 2014. http://data.stats.gov.cn/search/keywordlist. Accessed 12 May 2015

  • Palmer SJ, Frost RL, Smith MK (2011) Minimising reversion, using seawater and magnesium chloride, caused by the dissolution of tricalcium aluminate hexahydrate. J Colloid Interf Sci 353(2):398–405

    Article  CAS  Google Scholar 

  • Palmer SJ, Smith M, Frost RL (2012) Implication of calcium hydroxide in the seawater neutralisation of bauxite refinery liquors. In: In 9th International Alumina Quality Workshop, Perth, WA

  • Pan XL, Yu HY, Tu GF (2015) Reduction of alkalinity in bauxite residue during Bayer digestion in high-ferrite diasporic bauxite. Hydrometallurgy 151:98–106

    Article  CAS  Google Scholar 

  • Pang YG, Wu L, Shen P, Li SQ (2012) Dynamics factors’ effects to the sodium removal of bayer mud by CO2. J Sci Univ (Eng Sci Edn) 44(Supp.1):235–239

    Google Scholar 

  • Paradis M, Duchesne J, Lamontagne A, Isabel D (2007) Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings. Appl Geochem 22(11):2326–2333

    Article  CAS  Google Scholar 

  • Pontikes Y, Angelopoulos GN (2013) Bauxite residue in cement and cementitious applications: current status and a possible way forward. Resour Conserv Recy 73:53–63

    Article  Google Scholar 

  • Pulford ID, Hargreaves JSJ, Ďurišová J, Kramulova B, Girard C, Balakrishnan M, Batra VS, Rico JL (2012) Carbonised red mud—a new water treatment product made from a waste material. J Environ Manag 100:59–64

    Article  CAS  Google Scholar 

  • Rao PP (2010) Analysis on basic characteristics of Bayer’s dry red mud and the operation feature of the yard. J Eng Geo 18(3):340–344

    Google Scholar 

  • Samal S, Ray AK, Bandopadhyay A (2013) Proposal for resources, utilization and processes of red mud in India—a review. Int J Miner Process 118:43–55

    Article  CAS  Google Scholar 

  • Santini TC, Hinz C, Rate AW, Carter CM, Gilkes RJ (2011) In situ neutralisation of uncarbonated bauxite residue mud by cross layer leaching with carbonated bauxite residue mud. J Hazard Mater 194:119–127

    Article  CAS  Google Scholar 

  • Santini TC, Kerr JL, Warren LA (2015) Microbially-driven strategies for bioremediation of bauxite residue. J Hazard Mater 293:131–157

    Article  CAS  Google Scholar 

  • Schmalenberger A, O’Sullivan O, Gahan J, Cotter PD, Courtney R (2013) Bacterial communities established in bauxite residues with different restoration histories. Environ Sci Technol 47(13):7110–7119

    CAS  Google Scholar 

  • Si CH, Ma YQ, Lin CX (2013) Red mud as a carbon sink: variability, affecting factors and environmental significance. J Hazard Mater 244–245:54–59

    Article  Google Scholar 

  • Smith P (2009) The processing of high silica bauxites—review of existing and potential processes. Hydrometallurgy 98(1–2):162–176

    Article  CAS  Google Scholar 

  • Sun YD (2009) Research and implementation on storage process of “half-drying mixed red mud”. Energy Saving Nonferrous Met 3:20–25 (in Chinese)

    Google Scholar 

  • Suryavanshi AK, Scantlebury JD, Lyon SB (1999) Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cem Concr Res 26(5):717–727

    Article  Google Scholar 

  • Sushil S, Batra VS (2012) Modification of red mud by acid treatment and its application for CO2 removal. J Hazard Mater 203–204:264–273

    Article  Google Scholar 

  • Thornber MR, Binet D (1999) Caustic soda adsorption on Bayer residues. In: 5th International Alumina Quality Workshop, Bunbury, AQW Inc

  • Tuazon D, Corder GD (2008) Life cycle assessment of seawater neutralised red mud for treatment of acid mine drainage. Resour Conserv Recy 52(11):1307–1314

    Article  Google Scholar 

  • USGS (United States Geological Survey) (2015) Mineral commodity summaries: Bauxite and alumina statics information. United States Government Printing Office, Washington. http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/mcs-2015-bauxi.pdf. Accessed 13 June 2015

  • Wang PS (2005) Characteristics and rapid hardening mechinsm of red mud from alumina production with sintering process. Nonferrous Metals 3:115–119 (in Chinese)

    Google Scholar 

  • Wang KQ (2012) Physic-chemical properties of red mud in Shanxi. Light Met 4:25–28 (in Chinese)

    Google Scholar 

  • Wang KQ, Li SH (2007) Study on aluminum recovery from red mud with hydrochloric acid. Nonferrous Metals 7:16–19 (in Chinese)

    CAS  Google Scholar 

  • Wang L, Xiu PS (2011) Red mud stacking and environmental protection in the alumina refinery. Liaoning Chem Ind 10:1056–1059 (in Chinese)

    Google Scholar 

  • Wang Q, Li J, Zhao Y, Luan ZK (2009) Study on the dealkalization of red mud by suspension and carbonation. Chin J Environ Eng 3(12):2275–2280

    CAS  Google Scholar 

  • Wang LY, Li XL, Huo E (2010a) Research on dealkalization of bauxite residue. Sci Tech Info 7:367–368

    Google Scholar 

  • Wang YS, Yang G, Zhang JP (2010b) A process for sodium elimination from red mud of alumina production. China Patent No. CN102190322B (in Chinese)

  • Wang YS, Yang G, Zhang JP (2010c) Novel process for sodium elimination from red mud of alumina production. Nonferrous Met 62(3):61–64 (in Chinese)

    CAS  Google Scholar 

  • Wang Z, Han MF, Zhang YH, Zhou FS (2013) Study on the dealkalization technics of Bayer process red mud with CO2 by carbonation. Bull Chin Ceramic Soc 32(9):1851–1855 (in Chinese)

    CAS  Google Scholar 

  • Whittington BI (1996) The chemistry of CaO and Ca(OH)2 relating to the Bayer process. Hydrometallurgy 43(1):13–35

    Article  CAS  Google Scholar 

  • Whittington BI, Cardile CM (1996) The chemistry of tricalcium aluminate hexahydrate relating to the Bayer industry. Int J Miner Process 48(1):21–38

    Article  CAS  Google Scholar 

  • Whittington BI, Fallows TM, Willing MJ (1997) Tricalcium aluminate hexahydrate (TCA) filter aid in the Bayer industry: factors affecting TCA preparation and morphology. Int J Miner Process 49(1):1–29

    Article  CAS  Google Scholar 

  • Whittington BI, Fletcher BL, Talbot C (1998) The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions. Hydrometallurgy 49(1):1–22

    Article  CAS  Google Scholar 

  • Wong JWC, Ho G (1994) Sewage sludge as organic ameliorant for revegetation of fine bauxite refining residue. Resour Conserv Recy 11(1):297–309

    Article  Google Scholar 

  • Wu C, Zou Q, Xue SG, Mo JY, Pan WS, Lou LQ, Wong MH (2015) Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL). Chemosphere 138:447–453

    Article  CAS  Google Scholar 

  • Xu GD, Ao H, She YG (2012) Current status and development trend of aluminum industry in world and strategy suggestions in China under background of sustainable development. Chin J Nonferrous Met 22(7):2040–2050 (in Chinese)

    Google Scholar 

  • Xu L, Shi GD, Li YK, Zhong QW, Luo YZ, Yu P (2015) Study of scandium pre-enrichment from red mud leached by hydrochloric acid. Nonferr Met (Extract Metallurg) 1:54–56

    Google Scholar 

  • Xue SG, Zhu F, Kong XF, Wu C, Huang L, Huang N, Hartley W (2016) A review of the characterization and revegetation of bauxite residues (Red mud). Environ Sci Pollut Res 23(2):1120–1132

    Article  CAS  Google Scholar 

  • Yang CM, Zhang ML, Liu J, Shi DC, Wang DL (2009) Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata). Photosynthetica 47(1):55–60

    Article  CAS  Google Scholar 

  • Yang GJ, Yu HY, Li W, Li HH (2010) Pilot plant test of sulfur removal by red mud. Light Met 9:26–29 (in Chinese)

    Google Scholar 

  • Yi YL, Han MF (2012) Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid. Environ Sci 33(7):2522–2527

    CAS  Google Scholar 

  • Yu YB, Wang KQ, Wang H (2009) Study on properties of red mud of shanxi aluminium plant. J Taiyuan Univ Technol 1:63–66 (in Chinese)

    Google Scholar 

  • Zhang TA (2011) A process for alumina production based on the transformation of calcification-carbonization. China Patent No. CN201110275013.6 (in Chinese)

  • Zhang GJ (2014a) Quick opening pressure filter in dry red mud stockpiling. Auto Appl 6:35–36

    Google Scholar 

  • Zhang TA (2014b) Technology of aluminum metallurgy. Science Press, Beijing

    Google Scholar 

  • Zhang KY, Hu HP, Zhang LJ, Chen QY (2008) Surface charge properties of red mud particles generated from Chinese diaspore bauxite. T Nonferr Met Soc 18(5):1285–1289

    Article  CAS  Google Scholar 

  • Zhao QJ, Chen QY, Yang QF (2004) The trends of Chinese alumina production with combined process. Int J Min Met Mater 5:127–130 (in Chinese)

  • Zheng XF, Hu J, Jiang M, Xue ZX (2010) Study on optimization of deaklaization process on adding lime to red mud produced by low temperature Bayer process. Light Met 4:23 (in Chinese)

    Google Scholar 

  • Zhou QX, Song YF (2004) Contaminated soil remediation: principles and methods. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Zhu GH (2012) Study on recycling of titanium dioxide from red mud slag leached by sulfuric acid. Dissertation, Taiyuan Univ Sci Technol (in Chinese)

  • Zhu Q, Qi B (2009) Development and status of red mud comprehensive utilization technology in China. Lig'ht Met 8:7–10 (in Chinese)

  • Zhu XB, Li W, Guan XM (2015) An active dealkalization of red mud with roasting and water leaching. J Hazard Mater 286:85–91

    Article  CAS  Google Scholar 

  • Zhu F, Xue SG, Hartley W, Huang L, Wu C, Li XF (2016a) Novel predictors of soil genesis following natural weathering process of bauxite residue. Environ Sci Pollut Res 23(3):2856–2863

    Article  CAS  Google Scholar 

  • Zhu F, Li YB, Xue SG, Hartley W, Wu H (2016b) Effects of iron-aluminiumoxides and organic carbon on aggregate stability of bauxite residues. Environ Sci Pollut Res. doi:10.1007/s11356-016-6172-9

    Google Scholar 

Download references

Acknowledgments

Financial supports from the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry (No. 201509048), the National Natural Science Foundation of China (No. 41371475) and the Open-End Fund for the Valuable and Precision Instruments of Central South University (No. CSUZC201610) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengguo Xue.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Kong, X., Zhu, F. et al. Proposal for management and alkalinity transformation of bauxite residue in China. Environ Sci Pollut Res 23, 12822–12834 (2016). https://doi.org/10.1007/s11356-016-6478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6478-7

Keywords

Navigation