Skip to main content
Log in

Synthesis and characterization of catalysts based on mesoporous silica partially hydrophobized for technological applications

  • AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, mesoporous silica mobil composition of matter no. 41 (MCM-41) was synthesized by the sol-gel method. Two different surface modifications were made to transform this material into a very active adsorbent and catalyst support: (i) impregnation of iron nanoparticles and (ii) hydrophobization via chemical vapor deposition (CVD) with ethanol. The materials prepared with different iron contents, i.e., 2.5, 5, and 10 %, after hydrophobization, were characterized by several techniques. CHN analysis and Raman spectroscopy proved that approximately 15 % of carbon is deposited during CVD process mainly as organized carbonaceous structures. The specific surface area was determined by the BET method as up to 1080 m2 g−1, which explains the excellent results of the materials in the adsorption of model dyes methylene blue and indigo carmine. Mössbauer spectroscopy, thermogravimetric (TG)/DTG analysis, and transmission electron microscopy (TEM) images showed that the iron supported may be partially reduced during the CVD process to Fe2+ species, which are stabilized by the carbon coating. This iron species plays an important role in the oxidation of different contaminants, such as quinoline and methylene blue. The results obtained in the catalytic tests showed to be very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Borràs N, Arias C, Oliver R, Brillas E (2013) Anodic oxidation, electro-Fenton and photoelectro-Fenton degradation of cyanazine using a boron-doped diamond anode and an oxygen-diffusion cathode. J Electroanal Chem 689:158–167. doi:10.1016/j.jelechem.2012.11.012

    Article  Google Scholar 

  • Calvete T, Lima EC, Cardoso NF, Vaghetti JCP, Dias SLP, Pavan FA (2010) Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: kinetic, equilibrium, and thermodynamic studies. J Environ Manag 91:1695–1706. doi:10.1016/j.jenvman.2010.03.013

    Article  CAS  Google Scholar 

  • Chen C-Y, Li H-X, Davis ME (1993) Studies on mesoporous materials. Microporous Mater 2:17–26. doi:10.1016/0927-6513(93)80058-3

    Article  Google Scholar 

  • Costa DAS, Oliveira AAS, de Souza PP, Sapag K, Moura FCC (2015) The combined effect between Co and carbon nanostructures grown on cordierite monoliths for the removal of organic contaminants from the liquid phase. New J Chem 39:1438–1444. doi:10.1039/C4NJ01950D

    Article  CAS  Google Scholar 

  • de Souza WF, Guimarães IR, Oliveira LCA, Giroto AS, Guerreiro MC, Silva CLT (2010) Effect of Ni incorporation into goethite in the catalytic activity for the oxidation of nitrogen compounds in petroleum. Appl Catal A Gen 381:36–41. doi:10.1016/j.apcata.2010.03.036

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2008) Raman spectroscopy of carbon nanotubes. In: Elsevier B.V., pp 83–108. doi:10.1016/s1572-0934(08)00004-8

  • El-Sharkawy EA, Soliman AY, Al-Amer KM (2007) Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation. J Colloid Interface Sci 310:498–508. doi:10.1016/j.jcis.2007.02.013

    Article  CAS  Google Scholar 

  • Esteves A, Oliveira LCA, Ramalho TC, Goncalves M, Anastacio AS, Carvalho HWP (2008) New materials based on modified synthetic Nb2O5 as photocatalyst for oxidation of organic contaminants. Catal Commun 10:330–332. doi:10.1016/j.catcom.2008.09.012

    Article  CAS  Google Scholar 

  • Gad HMH, El-Sayed AA (2009) Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. J Hazard Mater 168:1070–1081. doi:10.1016/j.jhazmat.2009.02.155

    Article  CAS  Google Scholar 

  • Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater 27:207–216. doi:10.1016/S1387-1811(98)00255-8

    Article  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  • Li X, Shi B, Li M, Mao L (2015) Synthesis of highly ordered alkyl-functionalized mesoporous silica by co-condensation method and applications in surface coating with superhydrophilic/antifogging properties. J Porous Mater 22:201–210. doi:10.1007/s10934-014-9886-4

    Article  CAS  Google Scholar 

  • Lima EC et al (2008) Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution: kinetics and equilibrium study. J Hazard Mater 155:536–550. doi:10.1016/j.jhazmat.2007.11.101

    Article  CAS  Google Scholar 

  • Luan Z, He H, Zhou W, Cheng C-F, Klinowski J (1995) Effect of structural aluminium on the mesoporous structure of MCM-41. J Chem Soc Faraday Trans 91:2955–2959. doi:10.1039/FT9959102955

    Article  CAS  Google Scholar 

  • Mambrini RV, Fonseca TL, Dias A, Oliveira LCA, Araujo MH, Moura FCC (2012) Magnetic composites based on metallic nickel and molybdenum carbide: a potential material for pollutants removal. J Hazard Mater 241–242:73–81. doi:10.1016/j.jhazmat.2012.09.002

    Article  Google Scholar 

  • Mambrini RV, Saldanha ALM, Ardisson JD, Araujo MH, Moura FCC (2013) Adsorption of sulfur and nitrogen compounds on hydrophobic bentonite. Appl Clay Sci 83–84:286–293. doi:10.1016/j.clay.2013.08.030

    Article  Google Scholar 

  • Manikandan D, Mangalaraja RV, Avila RE, Siddheswaran R, Anathakumar S (2013) Montmorillonite–carbon nanotube nanofillers by acetylene decomposition using catalytic CVD. Appl Clay Sci 71:37–41. doi:10.1016/j.clay.2012.10.001

    Article  CAS  Google Scholar 

  • Martins AS, Vasconcelos VM, Ferreira TCR, Pereira-Filho ER, Lanza MRV (2015) Simultaneous degradation of diuron and hexazinone herbicides by Photo-Fenton: assessment of concentrations of H<sub>2</sub>O<sub>2</sub> and Fe<sup>2+</sup> by the response surface methodology. J Adv Oxid Technol 18:9–14

    CAS  Google Scholar 

  • Nxumalo EN, Letsoalo PJ, Cele LM, Coville NJ (2010) The influence of nitrogen sources on nitrogen doped multi-walled carbon nanotubes. J Organomet Chem 695:2596–2602

    Article  CAS  Google Scholar 

  • Oliveira AAS, Tristao JC, Ardisson JD, Dias A, Lago RM (2011) Production of nanostructured magnetic composites based on Fe0 nuclei coated with carbon nanofibers and nanotubes from red mud waste and ethanol. Appl Catal B 105:163–170. doi:10.1016/j.apcatb.2011.04.007

    Article  CAS  Google Scholar 

  • Oliveira AAS et al (2013a) Magnetic amphiphilic nanocomposites produced via chemical vapor deposition of CH4 on Fe–Mo/nano-Al2O3. Appl Catal A Gen 456:126–134. doi:10.1016/j.apcata.2013.02.027

    Article  CAS  Google Scholar 

  • Oliveira LCA, Fabris JD, Pereira MC (2013b) Óxidos de ferro e suas aplicações em processos catalíticos: uma revisão. Quim Nov. 36:123–130

  • Oliveira AAS, Christofani T, Teixeira IF, Ardisson JD, Moura FCC (2015) Magnetic amphiphilic nanocomposites based on silica-carbon for sulphur contaminant oxidation. New J Chem 39:5445–5452. doi:10.1039/C5NJ00593K

    Article  CAS  Google Scholar 

  • Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interf Sci 189–190:21–41. doi:10.1016/j.cis.2012.12.002

    Article  Google Scholar 

  • Paździor K, Klepacz-Smółka A, Ledakowicz S, Sójka-Ledakowicz J, Mrozińska Z, Żyłła R (2009) Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere 75:250–255. doi:10.1016/j.chemosphere.2008.12.016

    Article  Google Scholar 

  • Pinilla JL et al (2011) High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition. Int J Hydrog Energy 36:7832–7843. doi:10.1016/j.ijhydene.2011.01.184

    Article  CAS  Google Scholar 

  • Pizarro J et al (2015) Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica. Fuel 156:96–102. doi:10.1016/j.fuel.2015.04.030

    Article  CAS  Google Scholar 

  • Purceno AD, Barrioni BR, Dias A, da Costa GM, Lago RM, Moura FCC (2011) Carbon nanostructures-modified expanded vermiculites produced by chemical vapor deposition from ethanol. Appl Clay Sci 54:15–19. doi:10.1016/j.clay.2011.06.012

    Article  CAS  Google Scholar 

  • Putz A-M et al (2015) Pore ordering in mesoporous matrices induced by different directing agents. J Porous Mater 22:321–331. doi:10.1007/s10934-014-9899-z

    Article  CAS  Google Scholar 

  • Qin J, Li B, Zhang W, Lv W, Han C, Liu J (2015) Synthesis, characterization and catalytic performance of well-ordered mesoporous Ni-MCM-41 with high nickel content. Microporous Mesoporous Mater 208:181–187. doi:10.1016/j.micromeso.2015.02.009

    Article  CAS  Google Scholar 

  • Rahim Pouran S, Abdul Aziz AR, Wan Daud WMA, Embong Z (2015) Niobium substituted magnetite as a strong heterogeneous Fenton catalyst for wastewater treatment. Appl Surf Sci 351:175–187. doi:10.1016/j.apsusc.2015.05.131

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (2008) Reporting physisorption data for gas/solid systems. In: Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527610044.hetcat0065

  • Teixeira APC et al (2012) Iron: a versatile element to produce materials for environmental applications. J Braz Chem Soc 23:1579–1593

    Article  CAS  Google Scholar 

  • Vartuli JC et al (1994) Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem Mater 6:2317–2326. doi:10.1021/cm00048a018

    Article  CAS  Google Scholar 

  • Voss D (1999) Company aims to give fuel cells a little backbone. Science 285:683. doi:10.1126/science.285.5428.683

    Article  CAS  Google Scholar 

  • Wang Z et al (2015) Nanocarbons from rice husk by microwave plasma irradiation: from graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon 94:479–484. doi:10.1016/j.carbon.2015.07.037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge CAPES, CNPq, and FAPEMIG for financial support and the Center of Microscopy at the Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia C. C. Moura.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.R., Salviano, A.B., Oliveira, A.A.S. et al. Synthesis and characterization of catalysts based on mesoporous silica partially hydrophobized for technological applications. Environ Sci Pollut Res 24, 5991–6001 (2017). https://doi.org/10.1007/s11356-016-6692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6692-3

Keywords

Navigation