Skip to main content
Log in

Distribution of Cr and Pb in artificial sea water and their sorption in marine sediments: an example from experimental mesocosms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The uptake of two heavy metals (chromium and lead) in sediments in experimental mesocosms under exposure to different metal concentrations was evaluated by monitoring their concentrations over time both in seawater and in sediment. Two separate experiments under laboratory-controlled conditions were carried out for the two metals. Sediments were collected from a protected natural area characterized by low anthropic influence and were placed in mesocosms that were housed in aquaria each with seawater at a different metal concentration. At pre-established time intervals, seawater and sediment samples were collected from each mesocosm for chemical analyses. Quantification of chromium and lead concentration in seawater and sediment samples was carried out by atomic absorption spectrometer with graphite furnace. Low doses of chromium and lead (<1 mg L−1) do not entail an uptake in sediments and waters. At doses ≥1 mg L−1, evolution of concentrations over time shows significant differences between these two metals: (i) chromium absorption from seawater is twice faster than lead; (ii) lead accumulates in considerable amount in sediments. The different behaviour of the two investigated heavy metals could be ascribed to different interactions existing between metal ions and different components of sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbozu I, Emoruwa F (2014) Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from aqueous solutions using coconut husk. Afr J Environ Sci Technol 8:239–246

    Article  CAS  Google Scholar 

  • Ahmad M, Moon DH, Lim KJ, Shope CL, Lee SS, Usman ARA, Kim KR, Park JH, Hur SO, Yang JE, Ok YS (2012) An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environmental Earth Sciences 67:1023–1031

    Article  CAS  Google Scholar 

  • Barlett RJ, James BR (1988) Mobility and bioavailability of chromium in soils. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp. 267–304

    Google Scholar 

  • Bastami KD, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Bastami MD (2012) Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar Pollut Bull Marine 64:2877–2884

    Article  CAS  Google Scholar 

  • Bastami KD, Neyestani MR, Shemirani F, Soltani F, Haghparast S, Akbari A (2015) Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Mar Pollut Bull 92:237–243

    Article  CAS  Google Scholar 

  • Begy RC, Preoteasa L, Timar-Gabor A, Mihăiescu R, Tănăselia C, Kelemen S, Simon H (2016) Sediment dynamics and heavy metal pollution history of the Cruhlig Lake (Danube Delta, Romania). J Environ Radioactiv 153:167–175

    Article  CAS  Google Scholar 

  • Boffetta P, Fontana L, Stewart P, Zaridze D, Szeszenia-Dabrowska N, Janout V, Bencko V, Foretova L, Jinga V, Matveev V, Kollarova H, Ferro G, Chow WH, Rothman N, van Bemmel D, Karami S, Brennan P, Moore LE (2011) Occupational exposure to arsenic, cadmium, chromium, lead and nickel, and renal cell carcinoma: a case-control study from central and Eastern Europe. Occup Environ Med 68:723–728

    Article  CAS  Google Scholar 

  • Bordonaba JG, Vilavert L, Nadal M, Schuhmacher M, Domingo JL (2011) Monitoring environmental levels of trace elements near a hazardous waste incinerator human health risks after a decade of regular operations. Biol Trace Elem Res 144:1419–1429

    Article  CAS  Google Scholar 

  • Borrell A, Tornero V, Bhattacharjee D, Aguilar A (2016) Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh. Sci Total Environ 545-546:414–423

    Article  CAS  Google Scholar 

  • Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metal accumulation and toxicity in smoothhound (Mustelus mustelus) shark from Langebaan lagoon, South Africa. Food Chem 190:871–878

    Article  CAS  Google Scholar 

  • Buccolieri A, Buccolieri G, Cardellicchio N, Dell’Atti A, Di Leo A, Maci A (2006) Heavy metals in marine sediments of Taranto gulf (Ionian Sea, southern Italy. Mar Chem 99:227–235

    Article  CAS  Google Scholar 

  • Buffle J (1988) Complexation reactions in aquatic systems: an analytical approach. Ellis Horwood Ltd, Chichester

    Google Scholar 

  • Callender E (2003) Heavy metals in the environment—historical trends. In: Lollar BS (ed) Treatise on geochemistry. Elsevier, Amsterdam, pp 67–105

  • Caruso A, Cosentino C, Tranchina L, Brai M (2011) Response of benthic foraminifera to heavy metal contamination in marine sediments (Sicilian coasts, Mediterranean Sea. Chem Ecol 27:9–30

    Article  CAS  Google Scholar 

  • Charriau A, Lesven L, Gao Y, Leermakers M, Baeyens W, Ouddane B, Billon G (2011) Trace metal behaviour in riverine sediments: role of organic matter and sulphides. Appl Geochem 26:80–90

    Article  CAS  Google Scholar 

  • Ciacci C, Canonico B, Bilaniĉovă D, Fabbri R, Cortese K, Gallo G, Marcomini A, Pojana G, Canesi C (2012) Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One. doi:10.1371/journal.pone.0036937

    Google Scholar 

  • Copat C, Bella F, Castaing M, Fallico R, Sciacca S, Ferrante M (2012) Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull Environ Contam Toxicol 88:78–83

    Article  CAS  Google Scholar 

  • Cosentino C, Pepe F, Scopelliti G, Calabrò M, Caruso A (2013) Benthic foraminiferal response to trace element pollution. The case study of the Gulf of Milazzo, NE Sicily (central Mediterranean Sea. Environ Monit Assess 185:8777–8802

    Article  CAS  Google Scholar 

  • Custer KW, Kochersberger JP, Anderson PD, Fetters KJ, Hummel S, Burton GA Jr (2016) Macroinvertebrate responses to nickel in multisystem exposures. Environ Toxicol Chem 35:101–114

    Article  CAS  Google Scholar 

  • Dabrowski JM, de Klerk LP (2013) An assessment of the impact of different land use activities on water quality in the upper Olifants River catchment. Water SA 39:231–244

    Article  CAS  Google Scholar 

  • Das S, Patnaik SC, Sahu HK, Chakraborty A, Sudarshan M, Thatoi HN (2013) Heavy metal contamination, physico-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India. T Nonferr Metal Soc 23:484–493

    Article  CAS  Google Scholar 

  • Dean WE Jr (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248

    CAS  Google Scholar 

  • Dean WE Jr (1999) The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21:375–393

    Article  Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain (2014) Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J 12:3595 . doi:10.2903/j.efsa.2014.3595261 pp

    Article  Google Scholar 

  • Ernst SR, Morvan J, Geslin E, Le Bihan A, Jorissen FJ (2006) Benthic foraminiferal response to experimentally induced Erika oil pollution. Mar Micropaleontol 61:76–93

    Article  Google Scholar 

  • Franklin RL, Fávaro DIT, Damatto SR (2016) Trace metal and rare earth elements in a sediment profile from the Rio Grande reservoir, São Paulo, Brazil: determination of anthropogenic contamination, dating, and sedimentation rates. J Radioanal Nucl Ch 307:99–110

    Article  CAS  Google Scholar 

  • Franzini M, Leoni L (1972) A full matrix correction in X-ray fluorescence analysis of rock samples. Atti Società Toscana Scienze Naturali, Memorie, Serie A 79:7–22

    Google Scholar 

  • Frontalini F, Coccioni R (2008) Benthic foraminifera for heavy metal pollution monitoring: a case study from the central Adriatic Sea coast of Italy. Estuar Coast Shelf S 76:404–417

    Article  Google Scholar 

  • Frontalini F, Coccioni R (2012) The response of the benthic foraminiferal community to copper exposure: the mesocosm experience. J Environ Prot 3:342–352

    Article  Google Scholar 

  • Frontalini F, Curzi D, Giordano FM, Bernhard JM, Falcieri E, Coccioni R (2015) Effects of lead pollution on ammonia parkinsoniana (foraminifera): Ultrastructural and microanalytical approaches. Eur J Histochem 59 . doi:10.4081/ejh.2015.24608p

  • Furey PC, Lowe RL, Johansen JR (2009) Teratology in eunotia taxa in the great smoky mountains national park and description of eunotia macroglossa sp. nov. Diatom Res 24:273–290

    Article  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interf Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gustafsson M, Dahllöf I, Blanck H, Hall P, Molander S, Nordberg K (2000) Benthic foraminiferal tolerance to tri-n-butyltin (TBT) pollution in an experimental mesocosm. Mar Pollut Bull 40:1072–1075

    Article  CAS  Google Scholar 

  • Harbison P (1986) Mangrove muds—a sink and a source for trace metals. Mar Pollut Bull 17:246–250

    Article  CAS  Google Scholar 

  • He J, Lu Y, Luo G (2014) Ca(II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chem Eng J 244:202–208

    Article  CAS  Google Scholar 

  • Horsfall M Jr, Spiff AI (2005) Effect of metal ion concentration on the biosorption of Pb2+ and Cd2+ by Caladium bicolor (wild cocoyam. Afr J Biotechnol 4:191–196

    CAS  Google Scholar 

  • Huang Z, Lua L, Cai Z, Ren ZJ (2016) Individual and competitive removal of heavy metals using capacitive deionization. J Hazard Mater 302:323–331

    Article  CAS  Google Scholar 

  • Hwang DW, Kim SG, Choi M, Lee IS, Kim SS, Choi HG (2016) Monitoring of trace metals in coastal sediments around Korean peninsula. Mar Pollut Bull 102:230–239

    Article  CAS  Google Scholar 

  • Jurina I, Ivanić M, Vdović N, Troskot-Čorbić T, Lojen S, Mikac N, Sondi I (2015) Deposition of trace metals in sediments of the deltaic plain and adjacent coastal area (the Neretva River, Adriatic Sea. J Geochem Explor 157:120–131

    Article  CAS  Google Scholar 

  • Kavya Bai MP, Sundar K, Supriya R, Mahalakshmi P, Venkatraman M, Tamizhselvi R, Saran Kumar B, Vidya R (2013) Ecotoxicological studies on heavy metal tolerant microbes isolated from marine ecosystem. Research journal of pharmaceutical, biological and chemical. Sciences 4:1572–1586

    Google Scholar 

  • Kent DB, Davis JA, Anderson LCD, Rea BA, Waite TD (1994) Transport of chromium and selenium in the suboxic zone of shallow aquifer: influence of redox and adsorption reactions. Water Resour Res 30:1099–1114

    Article  Google Scholar 

  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut R 22:13772–13799

    Article  CAS  Google Scholar 

  • Koppelman MH, Emerson AB, Dillard JG (1980) Adsorbed Cr(III) on chlorite, illite, and kaolinite: an X-ray photoelectron spectroscopic study. Clay Clay Miner 28:119–124

    Article  CAS  Google Scholar 

  • Langård S, Costa M (2015) Chromium. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the Toxicology of Metals, 4th edn. Elsevier, Amsterdam, pp 717–742

  • Lee JH, Birch GF, Simpson SL (2016) Metal-contaminated resuspended sediment particles are a minor metal-uptake route for the Sydney rock oyster (Saccostrea Glomerata)—a mesocosm study, Sydney harbour estuary, Australia. Mar Pollut Bull. doi:10.1016/j.marpolbul.2016.01.039

    Google Scholar 

  • Liaghati T, Preda M, Cox M (2003) Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ Int 29:935–948

    Article  Google Scholar 

  • Maccotta A, De Pasquale C, Caruso A, Cosentino C, Alonzo G, Conte P (2013) Reconstruction of the environmental evolution of a Sicilian saltmarsh (Italy). Environ Sci Pollut R 20:4847–4858

    Article  CAS  Google Scholar 

  • Mahmood-ul-Hassan M, Suthar V, Rafique E, Ahmad R, Yasin M (2015) Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw. Environ Monit Assess 187:470. doi:10.1007/s10661-015-4692-2

    Article  CAS  Google Scholar 

  • Maret W (2016) The metals in the biological periodic system of the elements: concepts and conjectures. Int J Mol Sci 17:66. doi:10.3390/ijms17010066

    Article  Google Scholar 

  • Marion GM, Millero FJ, Camões MF, Spitzer P, Feistel R, Chen CTA (2011) pH of seawater. Mar Chem 126:89–96

    Article  CAS  Google Scholar 

  • Martí E, Sierra J, Cáliz J, Montserrat G, Vila X, Garau MA, Cruañas R (2013) Ecotoxicity of Cr, Cd, and Pb on two Mediterranean soils. Arch Environ Con Tox 64:377–387

    Article  Google Scholar 

  • Martín-Torre MC, Payán MC, Verbinnen B, Coz A, Ruiz G, Vandecasteele C, Viguri JR (2015a) Metal release from contaminated estuarine sediment under pH changes in the marine environment. Arch Environ Con Tox 68:577–587

    Article  Google Scholar 

  • Martín-Torre MC, Ruiz G, Galán B, Viguri JR (2015b) Generalised mathematical model to estimate Zn, Pb, Cd, Ni, Cu, Cr and as release from contaminated estuarine sediment using pH-static leaching tests. Chem Eng Sci 138:780–790

    Article  Google Scholar 

  • Mason RP (2012) The methylation of metals and metalloids in aquatic systems. In: Dricu A (ed) Methylation - from DNA, RNA and histones to diseases and treatment InTech pp 271–301

  • Milne CJ, Kinniburgh DG, Van Riemsdijk WH, Tipping E (2003) Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37:958–971

  • Miola B, de Morais JO, de Souza Pinheiro LS (2016) Trace metal concentrations in tropical mangrove sediments, NE Brazil. Mar Pollut Bull 102:206–209

    Article  CAS  Google Scholar 

  • Müller G, Gastner M (1971) The ‘Karbonat-bombe’, a simple device for the determination of carbonate content in sediment, soils, and other materials. Neues Jahrbuch für Mineralogie - Monatshefte, Bremerhaven, PANGAEA 10:466–469

    Google Scholar 

  • Muñoz-Vera A, García G, Antonio García-Sánchez A (2015) Metal bioaccumulation pattern by Cotylorhiza tuberculata (Cnidaria, Scyphozoa) in the Mar Menor coastal lagoon (SE Spain). Environ Sci Pollut R 22:19157–19169

    Article  Google Scholar 

  • Pribyl DW (2010) A critical review of the conventional SOC to SOM conversion factor. Geoderma 156:75–83

    Article  CAS  Google Scholar 

  • Rivail Da Silva M, Lamotte M, Donard OFX, Soriano-Sierra EJ, Robert M (1996) Metal contamination in surface sediments of mangroves, lagoons and southern Bay in Florianopolis Island. Environ Technol 17:1035–1046

    Article  CAS  Google Scholar 

  • Rizzo S, Basile S, Caruso A, Cosentino C, Tranchina L, Brai M (2009) Dating of a sediment core by 210Pbex method and Pb pollution chronology in the Palermo gulf (Italy). Water Air Soil Poll 202:109–120

    Article  CAS  Google Scholar 

  • Rocha C, Cardoso P, Cunha L, Gomes C, Júnior RR, Pinheiro RH, Costa MH, Burbano R (2015) Mutagenic effects of potassium dichromate as evaluated by means of animal and plant bioindicators. In Vivo 29:729–735

    CAS  Google Scholar 

  • Salehi MH, Hashemi Beni O, Beigi Harchegani H, Esfandiarpour Borujeni I, Motaghian HR (2011) Refining soil organic matter determination by loss-on-ignition. Pedosphere 21(4):473–482

    Article  Google Scholar 

  • Sbihi K, Cherifi O, Bertrand M, El Gharmali A (2014) Biosorption of metals (Cd, Cu and Zn) by the freshwater diatom Planothidium lanceolatum: a laboratory study. Diatom Res 29:55–63

    Article  Google Scholar 

  • Shakeri A, Moore F, Modabberi S (2009) Heavy metal contamination and distribution in the shiraz industrial complex zone soil, south shiraz, Iran. World Applied Sciences Journal 6:413–425

    CAS  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Skubała P, Rola K, Osyczka P (2016) Oribatid communities and heavy metal bioaccumulation in selected species associated with lichens in a heavily contaminated habitat. Environ Sci Pollut R. doi:10.1007/s11356-016-6100-z

    Google Scholar 

  • Snowball J, Sandgren P (1996) Lake sediment studies of Holocene glacier activity in the Kårsa valley, northern Sweden: contrast in interpretation. The Holocene 6:367–372

    Article  Google Scholar 

  • Spagnoli F, Bergamini MC (1997) Water-sediment exchange of nutrients during early diagenesis and resuspension of anoxic sediments from the northern Adriatic Sea shelf. Water Air Soil Poll 99:541–556

    CAS  Google Scholar 

  • Spagnoli F, Bartholini G, Dinelli E, Giordano P (2008) Geochemistry and particle size of surface sediments of gulf of Manfredonia (southern Adriatic Sea. Estuar Coast Shelf S 80:21–30

    Article  Google Scholar 

  • Spagnoli F, Dinelli E, Giordano P, Marcaccio M, Zaffagnini F, Frascari F (2014) Sedimentological, biogeochemical and mineralogical facies of northern and central western Adriatic Sea. J Marine Syst 139:183–203

    Article  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. doi:10.1155/2011/939161

    Google Scholar 

  • Taylor RW, Shen S, Bleam WF, SI T (2000) Chromate removal by dithionite-reduced clays: evidence from direct X-ray adsorption near edge spectroscopy (XANES) of chromate reduction at clay surface. Clay Clay Miner 48:648–654

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology. Springer AG, Basel, pp. 133–164

    Chapter  Google Scholar 

  • Topping JN, Murray JW, Pond DW (2006) Sewage effects on the food sources and diet of benthic foraminifera living in oxic sediment: a microcosm experiment. J Exp Mar Biol Ecol 329:239–250

    Article  Google Scholar 

  • Tranchina L, Basile S, Brai M, Caruso A, Cosentino C, Miccichè S (2008) Distribution of heavy metals in marine sediments of Palermo gulf (Sicily, Italy. Water Air Soil Poll 191:245–256

    Article  CAS  Google Scholar 

  • Wojtkowska M, Bogacki J, Witeska A (2016) Assessment of the hazard posed by metal forms in water and sediments. Sci Total Environ 551–552:387–392

    Article  Google Scholar 

  • Wright P, Mason CF (1999) Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the Orwell and the Stour, in eastern England. Sci Total Environ 226:139–156

    Article  CAS  Google Scholar 

  • Yanko V, Ahmad M, Kaminski M (1998) Morphological deformities of benthic foraminiferal tests in response to pollution by heavy metals: implications for pollution monitoring. J Foramin Res 28:177–200

    Google Scholar 

Download references

Acknowledgments

This research was funded by Research Projects of National Interest (PRIN, Progetti di Ricerca di Interesse Nazionale), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) 2010–2011, grant agreement 2010_RMTLYR. The authors are grateful to Dr. Marie-Madeleine Blanc-Valleron, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie (Paris), for the XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Cosentino.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maccotta, A., Cosentino, C., Coccioni, R. et al. Distribution of Cr and Pb in artificial sea water and their sorption in marine sediments: an example from experimental mesocosms. Environ Sci Pollut Res 23, 24068–24080 (2016). https://doi.org/10.1007/s11356-016-7630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7630-0

Keywords

Navigation