Skip to main content
Log in

A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aims of the present investigation were to reveal various trace metal accumulation abilities of two common helophytes Typha latifolia and Phragmites australis and to investigate their potential use in the phytoremediation of environmental metal pollution. The concentrations of Fe, Mn, Zn, Cu, Cd, Pb and Ni were determined in roots, rhizomes, stems and leaves of both species studied as well as in corresponding water and bottom sediments from 19 sites selected within seven lakes in western Poland (Leszczyńskie Lakeland). The principal component and classification analysis showed that P. australis leaves were correlated with the highest Mn, Fe and Cd concentrations, but T. latifolia leaves with the highest Pb, Zn and Cu concentrations. However, roots of the P. australis were correlated with the highest Mn, Fe and Cu concentrations, while T. latifolia roots had the highest Pb, Zn and Cd concentrations. Despite the differences in trace metal accumulation ability between the species studied, Fe, Cu, Zn, Pb and Ni concentrations in the P. australis and T. latifolia exhibited the following accumulation scheme: roots > rhizomes > leaves > stems, while Mn decreased in the following order: root > leaf > rhizome > stem. The high values of bioaccumulation factors and low values of translocation factors for Zn, Mn, Pb and Cu indicated the potential application of T. latifolia and P. australis in the phytostabilisation of contaminated aquatic ecosystems. Due to high biomass of aboveground organs of both species, the amount of trace metals stored in these organs during the vegetation period was considerably high, despite of the small trace metals transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Ali NA, Bernal M, Ater M (2004) Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquat Bot 80:163–176

    Article  Google Scholar 

  • Arivoli A, Mohanraj R, Seenivasan R (2015) Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environ Sci Pollut Res 22:13336–13434

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baldantoni D, Ligrone R, Alfani A (2009) Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. J Geochem Explor 101:166–174

    Article  CAS  Google Scholar 

  • Baldantoni D, Alfani A, Tommasi PD, Bartoli G, Virzo De Santo A (2004) Assessment of macro and microelement accumulation capability of two aquatic plants. Environ Pollut 130:149–156

    Article  CAS  Google Scholar 

  • Bernard JM, Lauve TE (1995) A comparison of growth and nutrient uptake in Phalaris arundinacea L. growing in a wetland and a constructed bed receiving landfill leachate. Wetlands 15:176–182

    Article  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bonnano G (2012) Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotox Environ Safe 80:20–27

    Article  Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotox Environ Safe 97:124–130

    Article  CAS  Google Scholar 

  • Bonanno G, Lo Giudice R (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645

    Article  CAS  Google Scholar 

  • Březinová T, Vymazal J (2015) Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol Eng 79:94–99

    Article  Google Scholar 

  • Brooks RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: R. R Brooks (Ed.) Plants that hyperaccumulate heavy metals: their roles in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Oxon: CAB International

  • Carranza-Álvarez C, Alonso-Castro AJ, Alfaro-De La Torre MC, García-De La Cruz RF (2008) Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water Air Soil Poll 188:297–309

    Article  Google Scholar 

  • Choiński A (1995) Catalog of Polish lakes. Wydawnictwo Naukowe UAM, Poznań (in Polish)

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Env Sci Tec 39:754–781

    Article  CAS  Google Scholar 

  • Dojlido JR (1995) Chemistry of surface water, Wydawnictwo Ekonomia i Środowisko, Białystok (in Polish)

  • Du Laing G, Van de Moortel AMK, Moors W, De Grauwe P, Meers E, Tack FMG, Verloo MG (2009) Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary. Ecol Eng 35:310–318

    Article  Google Scholar 

  • Duman F, Urey E, Koca FD (2015) Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Environ Sci Pollut R 22:17886–17896

    Article  CAS  Google Scholar 

  • Eid EM, Shaltout KH, El-Sheikh M, Asaeda T (2012) Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egipt): perspectives for phytoremediation. Flora 207:783–794

    Article  Google Scholar 

  • Ennabili A, Atera M, Radouxb M (1998) Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat Bot 62:45–56

    Article  Google Scholar 

  • Fawzy MA, El-Sayed Badr N, El-Khatib A, Abo-El-Kassem A (2012) Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess 184:1753–1771

    Article  CAS  Google Scholar 

  • Grisey E, Laffray X, Contoz O, Cavalli E, Mudry J, Aleya L (2012) The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France). Water Air Soil Pollut 223:1723–1741

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. Boca Raton, London, New York, Washington D.C.: CRC Press

  • Kabata-Pendias A, Szteke B (1998) Problems of trace analysis quality in research of the natural environment. Wydawnictwo Edukacyjne Zofii Dobkowskiej, Warszawa

  • Kamran MA, Mufti AR, Mubariz N, Syed JH, Bano A, Javed MT, Munis MFH, Tan Z, Chaudhary HJ (2014) The potential of the flora from different regions of Pakistan in phytoremediation: a review. Environ Sci Pollut Res 21:801–812

    Article  Google Scholar 

  • Laffont-Schwob I, Triboit F, Prudent P, Soulié-Märsche I, Rabier J, Despréaux M, Thiéry A (2015) Trace metal extraction and biomass production by spontaneous vegetation in temporary Mediterranean stormwater highway retention ponds: freshwater macroalgae (Chara spp.) vs. cattails (Typha spp.). Ecol Eng 81:173–181

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling, Amsterdam

    Google Scholar 

  • Lyubenova L, Schröder P (2011) Plants for waste water treatment—effects of heavy metals on the detoxification system of Typha latifolia. Bioresource Technol 102:996–1004

    Article  CAS  Google Scholar 

  • Ławniczak AE (2011) Variability of nutrient concentrations in sediments and wetland plants during the vegetation season under different sediment moisture conditions. Limnological Review 11:47–58

    Google Scholar 

  • Maddison M, Soosaar K, Mauring T, Mander Ü (2009) The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination 246:120–128

    Article  CAS  Google Scholar 

  • Maiti SK, Jaiswal S (2008) Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environ Monit Assess 136:355–370

    Article  CAS  Google Scholar 

  • Marchand L, Nsanganwimana F, Cook BJ, Vystavna Y, Huneau F, Le Coustumer P, Lamy JB, Oustrière N, Mench M (2014) Trace element transfer from soil to leaves of macrophytes along the Jalle d’Eysines River, France and their potential use as contamination biomonitors. Ecol Indic 46:425–437

    Article  CAS  Google Scholar 

  • Maric M, Antonijevic M, Alagic S (2013) The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil. Environ Sci Pollut Res 20:1181–1188

    Article  CAS  Google Scholar 

  • Markert B (1992) Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio 103:1–30

    Google Scholar 

  • Matusiewicz H (2003) Wet digestion methods. In: Mester Z, Sturgeon R (eds) Sample preparation for trace element analysis, comprehensive analytical chemistry. Elsevier, Amsterdam, p. 41

    Google Scholar 

  • Mazmudar K, Das S (2015) Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland species from a paper mill contaminated site in North East India. Environ Sci Pollut Res 22:701–710

    Article  Google Scholar 

  • Morari F, Dal Ferraro N, Cocco E (2015) Municipal wastewater treatment with Phragmites australis L. and Typha latifolia L. for irrigation reuse. Boron and heavy metals. Water Air Soil Pollut 226:56. doi:10.1007/s11270-015-2336-3

    Article  Google Scholar 

  • Newete SW, Byrne MJ (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res 23:10630–10643

    Article  CAS  Google Scholar 

  • Polechońska L, Klink A (2014) Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L. (reed canary grass). J Geochem Explor 146:27–33

    Article  Google Scholar 

  • Polechońska L, Samecka-Cymerman A (2015) Bioaccumulation of macro-and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environment pollution. Environ Sci Pollut Res 23:3469–3480

    Article  Google Scholar 

  • Rzymski P, Niedzielski P, Klimaszyk P, Poniedziałek B (2014) Bioaccumulation of selected metals in bivalves (Unionide) and Phragmites australis inhabiting a municipal water reservoir. Environ Monit Assess 186:3199–3212

    Article  CAS  Google Scholar 

  • Salem ZB, Laffray X, Ashoour A, Ayadi H, Aleya L (2014) Metal accumulation and distribution in the organ of reeds and cattails in a constructed treatment wetland (Etueffont, France). Ecol Eng 64:1–17

    Article  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2002) Aquatic macrophytes as biomonitors of pollution by textile industry. Bull Environ Contam Toxicol 69:82–96

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2007) Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Arch Environ Contam Toxicol 53:198–206

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kolon K, Stankiewicz A, Kaszewska J, Mróz L, Kempers AJ (2011) Rhizomes and fronds of Athyrium filix-femina as possible bioindicators of chemical elements from soils over different parent materials in southwest Poland. Ecol Indic 11:1105–1111

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New York

  • Sriyaraj K, Shutes RBE (2001) An assessment of the impact of motorway runoff on a pond, wetland and stream. Eniron Int 26:433–439

    Article  CAS  Google Scholar 

  • StatSoft, Inc. 2014. STATISTICA (data analysis software system), version 12. www.statsoft.com.

  • Sun H, Wang Z, Gao P, Liu P (2013) Selection of aquatic plants for phytoremediation of heavy metal in electroplate waste water. Acta Physiol Plant 35:355–364

    Article  CAS  Google Scholar 

  • Szymanowska A, Samecka-Cymerman A, Kempers AJ (1999) Heavy metals in three lakes in West Poland. Ecotox Environ Safe 43:21–29

    Article  CAS  Google Scholar 

  • Teuchies J, Jacobs S, Oosterlee L, Bervoets L, Meire P (2013) Role of plants in metal cycling in a tidal wetland: implications for phytoremediation. Sci Total Environ 445-446:146–154

    Article  CAS  Google Scholar 

  • Vymazal J, Kröpfelová L, Švehla J, Chrastnŷ V, Štíchová J (2009) Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecol Eng 35:303–309

    Article  Google Scholar 

  • Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P (2003) Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere 51:633–642

    Article  CAS  Google Scholar 

  • Zar J (1999) Biostatistical analysis. Prentice-Hall, New Jersey

  • Zgłobicki W, Lata L, Plak A, Reszka M (2011) Geochemical and statistical approach to evaluate background concentrations of Cd, Cu, Pb and Zn (case study: eastern Poland). Environ Earth Sci 61:347–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Klink.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klink, A. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Environ Sci Pollut Res 24, 3843–3852 (2017). https://doi.org/10.1007/s11356-016-8135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8135-6

Keywords

Navigation