Skip to main content
Log in

Sublethal dose of deltamethrin damage the midgut cells of the mayfly Callibaetis radiatus (Ephemeroptera: Baetidae)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In insects, the midgut performs multiple physiologic functions (e.g., digestion and nutrients absorption) and serves as a physical/chemical barrier against pathogens and chemical stressors such as deltamethrin, a pyrethroid insecticide, commonly used in insect control that are agricultural pests and human disease vectors. Here, we described the midgut cell ultrastructure of Callibaetis radiatus nymphs, which are bioindicators of water quality and the ultrastructural alterations in midgut under sublethal exposure to deltamethrin at three different periods (1, 12, 24 h). The digestive cells of deltamethrin-unexposed nymphs had long microvilli, many mitochondria in the apical cytoplasm, a rough endoplasmic reticulum, a basal labyrinth with openings for hemocele, and the midgut peritrophic matrix which is classified as type I. Nymphs exposed to deltamethrin exhibited digestive cells rich in autophagic vacuoles, basal labyrinth loss, and microvilli disorganization since the first hour of contact with deltamethrin. However, these midgut tissues underwent to autophagic cellular recovery along the 24 h of exposure to deltamethrin. Thus, the sublethal exposure to deltamethrin is sufficient to disturb the ultrastructure of C. radiatus midgut, which might reduce the abilities of these insects to survive in aquatic environments contaminated by pyrethroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Garland Science, New York

  • Alves SN, Serrão JE, Melo AL (2010) Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 4:592–597

    Article  Google Scholar 

  • Antwi FB, Reddy GVP (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40:915–923

    Article  CAS  Google Scholar 

  • Azevedo DO, Neves CA, Santos-Mallet JR, Gonçalves TCM, Zanuncio JC, Serrão JE (2009) Notes on midgut ultrastructure of Cimex hemipterus (Hemiptera: Cimicidae). J Med Ent 46:435–441

    Article  Google Scholar 

  • Azuma M, Nagae T, Maruyama M, Kataoka N, Miyake S (2012) Two water-specific aquaporins at the apical and basal plasma membranes of insect epithelia: molecular basis for water recycling through the cryptonephric rectal complex of lepidopteran larvae. J Ins Physiol 58:523–533

    Article  CAS  Google Scholar 

  • Beketov MA (2004) Comparative sensitivity to the insecticides deltamethrin and esfenvalerate of some aquatic insect larvae (Ephemeroptera and Odonata) and Daphnia magna. Russ J Ecol 35(3):200–204

    Article  CAS  Google Scholar 

  • Beketov MA, Liess M (2005) Acute contamination with esfenvalerate and food limitation: chronic effects on the mayfly, Cloeon dipterum. Environ Toxicol Chem 24:1281–1286

    Article  CAS  Google Scholar 

  • Bereswill R, Golla B, Streloke M, Schulz R (2013) Entry and toxicity of organic pesticides and copper in vineyard streams: erosion rills jeopardise the efficiency of riparian buffer strips. Agric Ecosyst Environ 172:49–50

  • Bengoa M et al (2014) Ground ultra-low volume adulticiding field trials using pyrethroids against Aedes albopictus in the Baix Llobregat region, Spain. J Am Mosq Control Assoc 30:42–50

    Article  Google Scholar 

  • Billingsley PF, Lehane MJ (1996) Structure and ultrastructure of the insect midgut. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 3–30

    Chapter  Google Scholar 

  • Bolognesi R, Terra WR, Ferreira C (2008) Peritrophic membrane role in enhancing digestive efficiency theoretical and experimental models. J Ins Physiol 54:1413–1422

    Article  CAS  Google Scholar 

  • Catae AF, Roat TC, Oliveira GA, Nocelli RCF, Malaspina O (2014) Cytotoxic effects of thiamethoxam in the midgut and Malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microsc Res Tech 77:274–281

    Article  CAS  Google Scholar 

  • Chand S (2014) Pyrethroid pesticides induced impairments in midgut histo-architecture of naiad of Trithemis aurora (Burm.) dragonfly (Odonata: Libellulidae). Adv Biores 5:130–137

    Google Scholar 

  • Chapman RF (2013) The insects: structure and function. Cambridge University Press, Cambridge United Kingdom

    Google Scholar 

  • Clark JM, Matsumura F (1982) Two different types of inhibitory effects of pyrethroids on nerve Ca and Ca+ Mg-ATPase activity in the squid, Loligo pealei. Pestic Biochem Physiol 18(2):180–190

    Article  CAS  Google Scholar 

  • Costa MC, Pinheiro DO, Serrão JE, Pereira MJB (2012) Morphological changes in the midgut of Aedes aegypti L. (Diptera: Culicidae) larvae following exposure to an Annona coriacea (Magnoliales: Annonaceae) extract. Neotrop Ent 41:311–314

    Article  CAS  Google Scholar 

  • Costa MC, de Paula SO, Martins GF, Zanuncio JC, Santana AEG, Serrão JE (2016) Multiple modes of action of the squamocin in the midgut cells of Aedes aegypti larvae. PLoS One 11:e0160928

    Article  Google Scholar 

  • Cruz PV, Salles FF, Hamada N (2014) Callibaetis Eaton (Ephemeroptera: Baetidae) from Brazil. J Nat Hist 48:591–660

    Article  Google Scholar 

  • Fernandes KM, Neves CA, Serrão JE, Martins GF (2014) Aedes aegypti midgut remodeling during metamorphosis. Parasitol Int 63:506–512

    Article  Google Scholar 

  • Fialho MCQ, Zanuncio JC, Neves CA, Ramalho FS, Serrão JE (2009) Ultrastructure of the digestive cells in the midgut of the predator Brontocoris tabidus (Heteroptera: Pentatomidae) after different feeding periods on prey and plants. Ann Ent Soc Am 102:119–127

    Article  Google Scholar 

  • Fialho MCQ, Moreira NR, Zanuncio JC, Ribeiro AF, Terra WR, Serrão JE (2012) Prey digestion in the midgut of the predatory bug Podisus nigrispinus (Hemiptera: Pentatomidae). J Ins Physiol 58:850–856

    Article  CAS  Google Scholar 

  • Fialho MCQ, Terra WR, Moreira NR, Zancunico JC, Serrão JE (2013) Ultrastructure and immunolocalization of digesive enzymes in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae). Arthropod Struct Dev 42:277–285

    Article  Google Scholar 

  • Forkpah C, Dixon LR, Fahrbach SE, Rueppell O (2014) Xenobiotic effects on the intestinal stem cell proliferation in adult honey bee (Apis melliera L.) workers. PLoS One 9:e91180

    Article  Google Scholar 

  • Gutiérrez Y, Santos HP, Serrao JE, Oliveira EE (2016) Deltamethrin-mediated toxicity and cytomorphological changes in the midgut and nervous system of the mayfly Callibaetis radiatus. PLoS One 11:e0152–e0383

    Google Scholar 

  • Gutiérrez Y, Tomé HVV, Guedes RNC, Oliveira EE (2017) Deltamethrin toxicity and impaired swimming behavior of two backswimmer species. Environ Toxicol Chem 36:1235–1242

    Article  Google Scholar 

  • Harker JE (1992) Swarm behavior and mate competition in mayflies (Ephemeroptera). J Zool 228:571–587

    Article  Google Scholar 

  • Harker JE (1999) The structure of the foregut and midgut of nymphs, subimagos and imagos of Cloeon dipterum (Ephemeroptera) and the functions of the gut of adult mayflies. J Zool 248:243–253

    Article  Google Scholar 

  • Illa-Bochaca I, Montuenga LM (2006) The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells. J Exp Biol 209:2215–2223

    Article  Google Scholar 

  • King PG (1988) Cellular organization and peritrophic membrane formation in the cardia (Proventriculus) of Drosophila melanogaster. J Morphol 196:253–282

    Article  CAS  Google Scholar 

  • Konus M, Koy C, Mikkat S, Kreutzer M, Zimmermann R, Iscan M, Glocker MO (2013) Molecular adaptations of Helicoverpa armigera midgut tissue under pyrethroid insecticide stress characterized by differential proteome analysis and enzyme activity assays. Comp Biochem Physiol D 8:152–162

    CAS  Google Scholar 

  • Lawler SP, Dritz DA, Johnson CS, Wolder M (2008) Does synergized pyrethrin applied over wetlands for mosquito control affect Daphnia magna zooplankton or Callibaetis californicus mayflies? Pest Manag Sci 64(8):843–847

    Article  CAS  Google Scholar 

  • MacVicker JAK, Billingsley PF, Djamgoz MBA (1993) ATPase activity in the midgut of the mosquito, Anopheles stephensi: biochemical characterisation of ouabain-sensitive and ouabain-insensitive activities. J Exp Biol 174:167–183

    CAS  Google Scholar 

  • Marques-Silva S, Serrão JE, Mezencio JM (2005) Peritrophic membrane protein in the larval stingless bee Melipona quadrifasciata anthidioides: immunolocalization of secretory sites. Acta Histochem 107:23–30

    Article  CAS  Google Scholar 

  • Marriel NB, Tomé HV, Guedes RC, Martins GF (2016) Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti). Acta Trop 158:88–96

    Article  CAS  Google Scholar 

  • Martins GF, Neves CA, Campos LA, Serrao JE (2006) The regenerative cells during the metamorphosis in the midgut of bees. Micron 37:161–168

    Article  Google Scholar 

  • McCafferty WP (1981) Aquatic entomology. Jones and Barlett, Sudbury Canada

    Google Scholar 

  • Moreira NR, Cardoso C, Dias RO, Ferreira C, Wr T (2017) A physiolocally-oriented transcriptomic analyss of the midgut of Tenebrio molitor. J Ins Physiol 99:58–66

    Article  CAS  Google Scholar 

  • Mugni H, Paracampo A, Marrochi N, Bonetto C (2013) Acute toxicity of cypermethrin to the nontarget organism Hyalella curvispina. Environ Toxicol Pharmacol 35:88–92

    Article  CAS  Google Scholar 

  • Narahashi T (2000) Neuroreceptors and ion channels as the basis for drug action: past, present, and future. J Pharmacol Exp Ther 294:1–26

    CAS  Google Scholar 

  • Neal JJ (1996) Brush border membrane and amino acid transport. Arch Ins Biochem Physiol 32:55–64

    Article  CAS  Google Scholar 

  • Neves CA, Bhering LL, Serrao JE, Gitirana LB (2002) FMRFamide-like midgut endocrine cells during the metamorphosis in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae). Micron 33:453–460

    Article  CAS  Google Scholar 

  • Pacey EK, O'Donnell MJ (2014) Transport of H+, Na+ and K+ across the posterior midgut of blood-fed mosquitoes (Aedes aegypti). J Ins Physiol 61:42–50

    Article  CAS  Google Scholar 

  • Pecher C, Fritz SA, Marini L, Fontaneto D, Pautasso M (2010) Scale-dependence of the correlation between human population and the species richness of stream macro-invertebrates. Basic Appl Ecol 11:272–280

    Article  Google Scholar 

  • Ribeiro AF, Ferreira C, Terra WR (1990) Morphological basis of insect digestion. In: Mellinger J (ed) Animal Nutrition and Transport Processes. Karger, Basel, pp 96–105

    Google Scholar 

  • Rocha LLV, Neves CA, Zanuncio JC, Serrão JE (2014) Endocrine and regenerative cells in the midgut of Chagas’ disease vector Triatoma vitticeps during different starvation periods. Folia Biol (Krakow) 62:259–267

    Article  Google Scholar 

  • Rost-Roszkowska MM, Poprawa I, Klag J, Migula P, Mesjasz-Przybylowicz J, Przybylowicz W (2010) Differentiation of regenerative cell in the midgut epithelium of Epilachna cf. nylanderi (Mulsant 1850) (Insecta, Coleoptera, Coccinellidae). Folia Biol (Krakow) 58:209–216

    Article  Google Scholar 

  • Rost-Roszkowska MM, Chajec Ł, Vilimova J, Tajovsk’y K, Kszuk-Jendrysik M (2015) Does autophagy in the midgut epithelium of centipedes depend on the day/night cycle? Micron 68:130–139

    Article  CAS  Google Scholar 

  • Rozilawati H, Lee HL, Mohd Masri S, Mohd Noor I, Rosman S (2005) Field bioefficacy of deltamethrin residual spraying against dengue vectors. Trop Biomed 22:143–148

    CAS  Google Scholar 

  • Salles FF, Ribeiro-da-Silva E, Serrão JE, Francischetti CN (2004) Baetidae (Ephemeroptera) na Região Sudeste do Brasil: Novos registros e chave para os gêneros no estágio ninfal. Neotrop Ent 33:725–735

    Article  Google Scholar 

  • Salvador R, Príncipi D, Berretta M, Fernández P, Paniego N, Sciocco-Cap A, Hopp E (2014) Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae). J Ins Sci 14(219):1–9

    CAS  Google Scholar 

  • Santos DE, Zanuncio JC, Oliveira AAO, Serrão JE (2015) Endocrine cells in the midgut of bees (Hymenoptera: Apoidea) with different levels of sociability. J Apicult Res 54:394–398

    Article  Google Scholar 

  • Saouter E, Le Menn R, Boudou A, Ribeiry F (1991) Structural and ultrastructural analysis of the gills and gut of Hexagenia rigida nymphs (Ephemeroptera) in relation to contamination mechanisms. Tiss Cell 23:929–938

    Article  CAS  Google Scholar 

  • Scudeler EL, Garcia ASG, Padovani CR, Pinheiro PFF, DCd S (2016) Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. Micron 80:96–111

    Article  CAS  Google Scholar 

  • Serrão JE, Cruz-Landim C (1995) The striated border of digestive cells in adult stingless bees (Hymenoptera, Apidae, Meliponinae). Cytobios 83:229–235

    Google Scholar 

  • Serrão JE, Fialho MCQ, Azevedo DO, Zanuncio JC (2014) Aquaporins in the honeybee crop—a new function for an old organ. Protoplasma 251:1441–1447

    Article  Google Scholar 

  • Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–1744

    Article  CAS  Google Scholar 

  • Silva FWS, Serrão JE, Elliot SL (2016) Density-dependent prophylxis in primary anti-parasite bariers in the velvetbean caterpillar. Ecol Entomol 41:451–458

    Article  Google Scholar 

  • Silver KS, Du Y, Nomura Y, Oliveira EE, Salgado VL, Zhorov BS (2014) Voltage-gated sodium channels as insecticide targets. In: Ephraim C (ed) Advances in insect physiology, vol 46. Academic Press, Burlington, pp 389–433

  • Soderlund D (2012) Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol 86:165–181

    Article  CAS  Google Scholar 

  • Teixeira AD, Marques-Araujo S, Zanuncio JC, Serrão JE (2015) Peritrophic membrane origin in adult bees (Hymenoptera): immunolocalization. Micron 68:91–97

    Article  CAS  Google Scholar 

  • Terra WR (1988) Physiology and biochemistry of insect digestion: an evolutionary perspective. Braz J Med Biol Res 21:675–734

    CAS  Google Scholar 

  • Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200

    Article  Google Scholar 

  • Terra WR, Costa RH, Feirreira C (2006) Plasma membranes from insect midgut cells. An Acad Bras Cienc 78:255–269

    Article  CAS  Google Scholar 

  • Tomé HV, Pascini TV, Dângelo RAC, Guedes RNC, Martins GF (2014) Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti. Parasit Vectors 7:1–9

    Article  Google Scholar 

  • Veenstra JA, Ida T (2014) More Drosophila enteroendocrine peptides: orcokinin B and the CCHamides 1 and 2. Cell Tiss Res 357:607–621

    Article  CAS  Google Scholar 

  • Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Ent 41:115–139

    Article  CAS  Google Scholar 

  • Wigglesworth VB (1930) The formation of the peritrophic membrane in insects, with special reference to the larvae of mosquitos. Q J Microsc Sci 73:593–616

    Google Scholar 

  • Zhu YC, Guo Z, Chen M-S, Zhu KY, Liu XF, Scheffler B (2011) Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). J Invertebr Pathol 106:296–307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Center of Microscopy and Microanalyses from UFV for technical assistance. We also would like to thank Karen Salazar Niño for her excellent technical assistance and Dr. Ana L. Salaro for providing free access to the fish-farming installations.

Funding

This research was supported by Brazilian Research Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais FAPEMIG.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: HPS, EEO, YG, and JES. Performed the experiments: YG and HPS. Analyzed the data: HPS, EEO, and JES. Contributed reagents/materials/analysis tools: EEO and JES. Wrote the paper: HPS, EEO, YG, and JES.

Corresponding author

Correspondence to José Eduardo Serrão.

Ethics declarations

Data availability

The authors declare that the data supporting the findings of the present study are available within the article and from the corresponding author upon request.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, H.P., Gutiérrez, Y., Oliveira, E.E. et al. Sublethal dose of deltamethrin damage the midgut cells of the mayfly Callibaetis radiatus (Ephemeroptera: Baetidae). Environ Sci Pollut Res 25, 1418–1427 (2018). https://doi.org/10.1007/s11356-017-0569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0569-y

Keywords

Navigation