Skip to main content
Log in

Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13C NMR spectroscopy under different initial C/N ratios

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

More than 1 million tons of fresh organic wastes is produced in the Souss-Massa region in Morocco. Tomato organic residues represent more than 25% of the total organic wastes and are deposited in uncontrolled landfills. Thus, composting can represent a valuable and pertinent solution to this environmental problem. The objectives of this experiment are to identify the potential functional groups responsible for compost phytotoxicity and to determine the optimum initial carbon to nitrogen ratio (C/N) for maximum recovery of tomato residues. The experiment consisted of the variation of the initial C/N ratios (25, 30, 35, and 40) using mixtures of different raw materials (tomato residues, melon residues, olive mill pomace, and sheep manure). Physicochemical parameters (pH, electrical conductivity, C/N ratio, and humic acid/fulvic acid ratio) were determined and spectroscopic analyses (UV-vis and NMR-13C) were performed during the composting process along with quality parameters (germination and phytotoxicity tests) at the end. The results showed that the compost with the initial C/N ratio of 35 is the most humified with the least phytotoxic effect. The germination and phytotoxicity tests were negatively correlated with the methoxyl/N-alkyl-C ratio and O-alkyl-C. These two functional groups are probably the origin of phytotoxicity expression in compost quality tests. Thus, a simple and precise quality test could be performed to evaluate directly the phytotoxicity and maturity of compost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ammari T, Al-Omari Q, Abbassi B (2012) Composting sewage sludge amended with different sawdust proportions and textures and organic waste of food industry—assessment of quality. Environ Technol 33(14):1641–1649. https://doi.org/10.1080/09593330.2011.641589

    Article  CAS  Google Scholar 

  • Araujo A, Monteiro R (2005) Plant bioassays to assess toxicity of textile sludge compost. Sci agric (Piracicaba Braz) 62(3)

  • Asgharipour MR, Sirousmehr AR (2012) Comparison of three techniques for estimating phytotoxicity in municipal solid waste compost. Ann Biol Res 3(2):1094–1101 http://scholarsresearchlibrary.com/ABR-vol3-iss2/ABR-2012-3-2-1094-1101.pdf (accessed 23.09.16)

    Google Scholar 

  • Aslam D, Vander Gheynst J, Rumsey T (2008) Development of models for predicting carbon mineralization and associated phytotoxicity in compost-amended soil. Bioresour Technol 99(18):8735–8741

    Article  CAS  Google Scholar 

  • Azim K, Komenane S, Soudi B (2017) Agro-environmental assessment of composting plants in southwestern of Morocco (Souss-Massa Region). Int J Recycl Org Waste Agric 6(2):107–115. https://doi.org/10.1007/s40093-017-0157-7

    Article  Google Scholar 

  • Blumfield T, Xu Z, Mathers N, Saffigna P (2004) Decomposition of nitrogen-15 labeled hoop pine harvest residues in subtropical Australia. Soil Sci Soc Am J 68(5):1751

    Article  CAS  Google Scholar 

  • Brewer L, Sullivan D (2003) Maturity and stability evaluation of composted yard trimmings. Compost Sci Util 11(2):96–112. https://doi.org/10.1080/1065657X.2003.10702117

    Article  Google Scholar 

  • Calderoni G, Schnitzer M (1984) Effects of age on the chemical structure of paleosol humic acids and fulvic acids. Geochim Cosmochim Acta 48(10):2045–2051

    Article  CAS  Google Scholar 

  • Choi K (1999) Optimal operating parameters in the composting of swine manure with wastepaper. J Environ Sci Health 34(6):975–987. https://doi.org/10.1080/03601239909373240

    Article  CAS  Google Scholar 

  • El Bilali H, Berjan S, Driouech N, Ahouate L, Abouabdillah A, Najid A, Rouini I and Azim K (2012) Agricultural and rural development governance in Morocco. Book of proceedings. Third International Scientific Symposium “Agrosym 2012”. Jahorina (East Sarajevo). November 15–17. Bosnia and Herzegovina. Pp. 669–674. https://doi.org/10.13140/RG.2.2.35533.64485

  • Gopinathan M and Thirumurthy M (2012) Evaluation of phytotoxicity for compost from organic fraction of municipal solid waste and paper & pulp mill sludge. Environmental Research, Engineering and Management, 59(1)

  • Goyal S, Dhull S, Kapoor K (2005) Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour Technol 96(14):1584–1591

    Article  CAS  Google Scholar 

  • René Guénon (2010) Vulnérabilité des sols méditerranéens aux incendies récurrents et restauration de leurs qualités chimiques et microbiologiques par des apports de composts (Doctoral dissertation). Retrieved from HAL Archives Ouverts (Accession Order No. [N° 2010AIX30043])

  • Jackson ML (1967) Soil-chemical analysis. 498 pp. Prentice-Hall of Indi-v Fvt. Ltd. New Delhi

  • Jordan S, Mullen G (2007) Enzymatic hydrolysis of organic waste materials in a solid–liquid system. Waste Manag 27(12):1820–1828. https://doi.org/10.1016/j.wasman.2006.12.020

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34(2):139–162. https://doi.org/10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  • Larbi M (2006) Influence de la qualité des composts et de leurs extraits sur la protection des plantes contre les maladies fongiques. [Influence of the quality of composts and compost extracts on their capacity to protect plants against fungal diseases.] Dissertation. Institut de recherche de l'agriculture biologique FiBL. CH-Frick; l’Université de Neuchâtel

  • Larre-larrouy M, Thuries L (2006) Does the methoxyl group content of the humic acid-like fraction of composts provide a criterion to evaluate their maturity? Soil Biol Biochemist 38(9):2976–2979

    Article  CAS  Google Scholar 

  • Lee M (1995) Official methods of analysis of AOAC International (16th edn). Trends Food Sci Technol. 6 (11). p.382

  • Leifeld J, Siebert S, Kögel-Knabner I (2002) Changes in the chemical composition of soil organic matter after application of compost. Eur J Soil Sci 53(2):299–309. https://doi.org/10.1046/j.1351-0754.2002.00453.x

    Article  Google Scholar 

  • Manios V, Tsikalas P, Siminis H, Verdonck O (1989) Phytotoxicity of olive tree leaf compost in relation to the organic acid concentration. Biol Waste 27(4):307–317. https://doi.org/10.1016/0269-7483(89)90011-6

    Article  CAS  Google Scholar 

  • Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J, Bujoli B, Gan Z, Hoatson G (2001) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76

    Article  Google Scholar 

  • Mathers N, Jalota R, Dalal R and Boyd S (2007) 13C-NMR analysis of decomposing litter and fine roots in the semi-arid Mulga Lands of southern Queensland. Soil Biol. Biochem.. 39(5). Pp.993–1006

  • Mathur SP, Owen G, Dinel H, Schnitzer M (1993) Determination of compost biomaturity. Literature review. Biol Agric Hortic 10(2):65–85. https://doi.org/10.1080/01448765.1993.9754655

    Article  Google Scholar 

  • Mustin M (1987) Le compost : La gestion de la matière organique. Francois Dubusc, Paris 954p

    Google Scholar 

  • N'Dayegamiye A, Goulet M, Laverdière M (1997) Effet à long terme d'apports d'engrais minéraux et de fumier sur les teneurs en C et en N des fractions densimétriques et des agrégats du loam limoneux Le Bras. Can J Soil Sci 77(3):351–358. https://doi.org/10.4141/S96-020

    Article  Google Scholar 

  • Petard J 1993 Les méthodes d'analyse -Tome1- analyses de sols. L'institut français de recherche scientifique pour le développement en coopération centre de Nouméa. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-03/43099.pdf

  • Rhoades JD (1982) Cation exchange capacity. In: A.L. Page (ed.) Methods of soil analysis. Part 2: chemical and microbiological properties (2nd ed.) Agron J 9:149–157

    Google Scholar 

  • Rynk R (1992) On-farm composting handbook. Northeast Regional Agricultural Engineering Service. Cornell University, Ithaca https://campus.extension.org/pluginfile.php/48384/course/section/7167/NRAES%20FarmCompost%20manual%201992.pdf

    Google Scholar 

  • Said-Pullicino D, Kaiser K, Guggenberger G, Gigliotti G (2007) Changes in the chemical composition of water-extractable organic matter during composting: distribution between stable and labile organic matter pools. Chemosphere 66(11):2166–2176. https://doi.org/10.1016/j.chemosphere.2006.09.010

    Article  CAS  Google Scholar 

  • Selim SH, Mona M, Zayed S, Atta HM (2012) Evaluation of phytotoxicity of compost during composting process. Nat Sci 10(2):69–77

    Google Scholar 

  • Smidt E, Meissla K, Schmutzer M, Hinterstoisserb B (2008) Co-composting of lignin to build up humic substances—strategies in waste management to improve compost quality. Ind Crop Prod 27(2):196–201. https://doi.org/10.1016/j.indcrop.2007.07.007

    Article  CAS  Google Scholar 

  • Soclo HH, Aguewe M, Adjahossou BC, Houngue T, Azontonde AH (1999) Recherche de compost type et toxicité résiduelle au Bénin [Search for compost quality and residual toxicity in Benin]. Techniques sciences méthodes. Génie Urbain Génie Rural 9:68–76

    Google Scholar 

  • Soudi B (2005) The composting of cattle manure and crop residues from greenhouse production system. Bullet Transfer of Technology in Agriculture. PNTTA June edition (2005) N°129. http://www.agrimaroc.net/129.pdf

  • Tang J (2010) Effects of raw materials and bulking agents on the thermophilic composting process. J Microbiol Biotechnol 20(5):925–934. https://doi.org/10.4014/jmb.0908.08036

    Article  Google Scholar 

  • Tiquia S, Tam N (1998) Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresour Technol 65(1–2):43–49

    Article  CAS  Google Scholar 

  • Vinceslas-Akpa M, Loquet M (1997) Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol Biochem 29(3–4):751–758

    Article  CAS  Google Scholar 

  • Wichuk KM, McCartney D (2013) Compost stability and maturity evaluation—a literature review. Environ Eng Sci 8(5):601–620

    Article  Google Scholar 

  • Zbytniewski R, Buszewski B (2005) Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresour Technol 96(4):471–478

    Article  CAS  Google Scholar 

  • Zucconi F, Pera A, Forte M, De Bertoldi M (1981) Evaluating toxicity of immature compost. Biocycle 22:54–57

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Fabio Ziarelli for performing 13C NMR analysis; Dr. Pascal Mirleau for 13C NMR deconvolution and integration; and Dr. Tarek Amine for language support.

Funding

This research was supported by both the research project of AMABIO-INRA and the Campus France research project PRAD 13-09 [Grant Number 28050PE].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Azim.

Additional information

Responsible editor: Philippe Garrigues

Appendix

Appendix

Table 5 Pearson correlation between bioassays and chemical groups
Table 6 Pearson correlation between bioassays and chemical groups in compost C/N35

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azim, K., Faissal, Y., Soudi, B. et al. Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13C NMR spectroscopy under different initial C/N ratios. Environ Sci Pollut Res 25, 3408–3422 (2018). https://doi.org/10.1007/s11356-017-0704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0704-9

Keywords

Navigation