Skip to main content
Log in

Hydrogeochemical processes and influence of seawater intrusion in coastal aquifers south of Chennai, Tamil Nadu, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Seawater intrusion promotes the salinity of groundwater, and it poses a great environmental impact on a global scale. The present study was carried out to determine the hydrogeochemical processes and influence of seawater intrusion in the coastal aquifers using geophysical, geochemical, and stable isotope techniques. The true resistivity value ranges from 0.5 to 8008.5 Ω-m which has been measured using vertical electrical sounding (VES) based on the Schlumberger method. About 33 groundwater samples were collected during post-monsoon (POM) (January 2012) and pre-monsoon (PRM) (June 2012) seasons from open and bore wells and were analyzed for major ions and stable isotopes. EC, Na+, and Cl were high in groundwater of wells near salt pan, the Buckingham Canal, and backwater regions. Around 45% of the groundwater of this study area is of Na+-Cl type due to salinisation. Reverse ion exchange and silicate weathering are the dominant processes controlling the geochemistry of groundwater. Saturation indexes (SI) of halite (SIhalite) and gypsum (SIgypsum) versus sulfate show an increasing trend line from > 0 to < 0, which implies higher dissolution of minerals and hints increasing salinization during both seasons. The value of Na+/Cl ranges between 0.7 and 2.4 (POM) and from 0.6 to 2.8 (PRM). The molar ratio suggested that around 25% of the groundwater samples are with values similar to those of seawater. Further, the groundwater is also affected by saline backwater, salt pan activities, and Buckingham Canal. Some locations are also are affected by anthropogenic, agricultural activities and geochemical processes. Heavy stable isotopes were found to be dominant in the coastal region due to seawater intrusion. Stable isotopes of δ18O range from − 5.6 to − 2.9‰ during both periods. About 201 km2 of this area is affected by salinization. It is necessary to reduce pumping and plan for physical barriers to create freshwater ridges for controling the seawater intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • American Public Health Association (APHA) (2005) Standard methods for the examination of water and waste, 16th edn. Am. Publ. Heal. Assoc, Washington, DC, p 100

    Google Scholar 

  • Anil Kumar KS, Priju CP, Narasimha Prasad NB (2015) Study on saline water intrusion into the shallow coastal aquifers of Periyar River Basin, Kerala using hydrochemical and electrical resistivity methods. Aqua Proc 32:32–40. https://doi.org/10.1016/j.aqpro.2015.02.006

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry groundwater and pollution, 2nd edn. A.A. Balkema Publishers, Leiden

  • Askri B, Ahmed AT, Al-Shanfari RA, Bouhlila R, Ben K, Al-Farisi K (2016) Isotopic and geochemical identifications of groundwater salinization processes in Salalah coastal plain, Sultanate of Oman. Chem Erde 76(2):243–255. https://doi.org/10.1016/j.chemer.

    Article  CAS  Google Scholar 

  • Ataie-Ashtiani B, Werner AD, Simmons CT, Morgan LK, Lu C (2013) How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise. J Hydrogeol 21(7):1673–1677. https://doi.org/10.1007/s10040-013-1021-0

    Article  Google Scholar 

  • Bahar M, Reza S (2010) Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of Southwest Bangladesh. Environ Earth Sci 61:1065–1073

    Article  CAS  Google Scholar 

  • BIS (2012) Specification for drinking water IS: 10500:1991. Bureau of Indian Standards, New Delhi

    Google Scholar 

  • Boluda-Botella N, Valdes-Abellan J, Pedraza R (2014) Applying reactive models to column experiments to assess the hydrogeochemistry of seawater intrusion: optimizing Acuaintrusion and selecting cation exchange coefficients with PHREEQC. J Hydrol 510:59–69. https://doi.org/10.1016/j.jhydrol.2013.12.009

    Article  CAS  Google Scholar 

  • Bullen TD, Krabbenhoft DP, Kendall C (1996) Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin. Geochim Cosmochim Acta 60(10):1807–1821. https://doi.org/10.1016/0016-7037(96)00052-X

    Article  CAS  Google Scholar 

  • Caroll D (1962) Rainwater as a chemical agent of geologic processes, a review. Geol Surv Water Supply 1535:1–16

    Google Scholar 

  • Carreira PM, Marques JM, Nunes D, Fernando A, Santos M, Gonçalves R, Pina A, Mota Gomes A (2013) Isotopic and geochemical tracers in the evaluation of groundwater residence time and salinization problems at Santiago Island, Cape Verde. Proc Earth Planet Sci 7:113–117. https://doi.org/10.1016/j.proeps.2013.03.063

    Article  CAS  Google Scholar 

  • CGWB (Central Ground Water Board) (2007) District groundwater brochure Kancheepuram District. CGWB, Tamil Nadu, pp 1–23

  • Cerling TE, Pederson BL, Damm KLV (1989) Sodium calcium ion exchange in weathering of shale; implication for global weathering. Budget 17:552–554

    CAS  Google Scholar 

  • Chadda DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7(5):431–439. https://doi.org/10.1007/s100400050216

    Article  Google Scholar 

  • Chidambaram S, Karmegam U, Prasanna MV, Sasidhar P, Vasanthavigar M (2011) A study on hydrochemical elucidation of coastal groundwater in and around Kalpakkam region, Southern India. Environ Earth Sci 64(5):1419–1431. https://doi.org/10.1007/s12665-011-0966-3

    Article  CAS  Google Scholar 

  • Clark ID, Fritz P (1997) Tracing the hydrological cycle. In: Environmental isotopes in hydrogeology. CRC Press, Florida, pp 35–60

    Google Scholar 

  • Craig M (1961) Isotopic variation in meteoric waters. Science 133(3465):1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  CAS  Google Scholar 

  • Custodio, E (2005) Coastal aquifers as important natural hydrogeological structures. In Taylor and Francis (Ed). Groundwater and Human Development Chapter 3, 15–38

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dar IA, Sankar K, Shafi ST, Dar MA (2012) Hydrochemistry of groundwater of Thiruporur block, Tamil Nadu (India). Arab J Geosci 5(2):259–262. https://doi.org/10.1007/s12517-010-0203-5

    Article  CAS  Google Scholar 

  • Darnault CJG, Godinez IG (2008) Overexploitation and contamination of shared groundwater resources, coastal aquifers and saltwater intrusion. In: Darnault CJG (ed) NATO science for peace and security series C: environmental security. Springer, Dordrecht

  • Ebrahimi M, Kazemi H, Ehtashemi M, Rockaway T (2016) Assessment of groundwater quantity and quality and saltwater intrusion in the Damghan basin, Iran, Chem. Der. Erde 76(2):227–241. https://doi.org/10.1016/j.chemer.2016.04.003

    Article  CAS  Google Scholar 

  • Elango L, Ramachandran S, Chowdary YSN (1992) Groundwater quality in coastal regions of South Madras. Ind J Environ Health 34:318–325

    CAS  Google Scholar 

  • Fisher RS, Mulican WF (1997) Hydrochemical evaluation of sodium sulphate and sodium-chloride groundwater beneath the northern Chihuahuan desert, trans-Pecos, Texas USA. Hydrogeol J 10:455–474

    Google Scholar 

  • Gnanachandrasamy G, Ramkumar T, Venkatramanan S, Chung SY, Vasudevan S (2016) Identification of saline water intrusion in part of Cauvery deltaic region, Tamil Nadu, Southern India: using GIS and VES methods. Mar Geophys Res 37(2):113–126. https://doi.org/10.1007/s11001-016-9271-6

    Article  Google Scholar 

  • Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Uddin MJ, Shimada J, Jinno K (2009) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J Hazard Mater 164(2-3):1335–1345. https://doi.org/10.1016/j.jhazmat.2008.09.046

    Article  CAS  Google Scholar 

  • Han DM, Song XF, Currell MJ, Yang JL, Xiao GQ (2014) Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay. China J Hydrol 508:12–27. https://doi.org/10.1016/j.jhydrol.2013.10.040

    Article  CAS  Google Scholar 

  • Han D, Vincent Post EA, Song X (2015) Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J Hydrol 531:1067–1080. https://doi.org/10.1016/j.jhydrol.2015.11.013

    Article  CAS  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. 3rd edn, US Geological Survey, Water-Supply Paper 2254. University of Virginia, Charlottesville, p 263

  • Hem JD (1991) Study and interpretation of the chemical characteristics of natural water, vol 63. Scientific Publishers, Jodhpur, p 2254

    Google Scholar 

  • Indu SN, Rajaveni SP, Schneider M, Elango L (2015) Geochemical and isotopic signatures for the identification of seawater intrusion in an alluvial aquifer. Earth Syst Sci 124(6):1281–1291. https://doi.org/10.1007/s12040-015-0600-y

    Article  Google Scholar 

  • Jacks G, Sharma VP (1995) Geochemistry of calcite horizons in relation to hillslope processes, southern India. Geoderms 67(3-4):203–214. https://doi.org/10.1016/0016-7061(95)00002-6

    Article  CAS  Google Scholar 

  • Jeff BL, Andre SE (2010) A multi-isotope (δD, δ18O, 87Sr/86Sr, and δ11B) approach for identifying saltwater intrusion and resolving groundwater evolution along the Western Caprock Escarpment of the Southern High Plains, New Mexico. Appl Geochem 25:159–174

  • Jorgensen NO, Andersen MS, Engesgaard P (2008) Investigation of a dynamic seawater intrusion event using strontium isotopes (87Sr/86Sr). J Hydrol 348(3-4):257–269. https://doi.org/10.1016/j.jhydrol.2007.10.001

    Article  Google Scholar 

  • Kanagaraj G, Elango L (2016) Hydrogeochemical processes and impact of tanning industries on groundwater quality in Ambur, Vellore district, Tamil Nadu, India. Environ Sci Pollut Res 23(23):24364–24383. https://doi.org/10.1007/s11356-016-7639-4

    Article  CAS  Google Scholar 

  • Kanagaraj G, Sridhar SGD, Sakthivel AM (2015) Assessment of groundwater quality and seawater intrusion along the coastal aquifer around Kalpakkam, Tamil Nadu. India J Coast Sci 2:6–11

    Google Scholar 

  • Karanth KR (1991) Impact of human activities on hydrogeological environment. J Geol Soc India 38:195–206

    CAS  Google Scholar 

  • Katz BG, Coplen TB, Bullen TD, Hal Davis J (1997) Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water 35(6):1014–1028

    Article  CAS  Google Scholar 

  • Kazakis N, Pavlou A, Vargemezis G, Voudouris KS, Soulios G, Pliakas F, Tsokas G (2016) Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data, an application in the coastal area of eastern Thermaikos Gulf, Greece. Sci Total Environ 543:373–387

    Article  CAS  Google Scholar 

  • Kenoyer GJ, Bowser CJ (1992) Groundwater chemical evolution in a sandy silicate aquifer in northern Wisconsin; 1. Patterns and rates of change. Water Resour Res 28(2):579–589. https://doi.org/10.1029/91WR02302

    Article  CAS  Google Scholar 

  • Ketabchi H, Mahmoodzadeh D, Ashtiani BA, Simmons CT (2016) Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J Hydrol 535:235–255. https://doi.org/10.1016/j.jhydrol.2016.01.083

    Article  Google Scholar 

  • Kim K (2002) Plagioclase weathering in the groundwater system of a sandy, silicate aquifer. Hydrol Process 16(9):1793–1806. https://doi.org/10.1002/hyp.1081

    Article  Google Scholar 

  • Kontis EE, Gaganis P (2012) Hydrochemical characteristics and groundwater quality in the Island of Lesvos, Greece. J Global Nest 14:422–430

    Google Scholar 

  • Kumar B, Rai SP, Kumar US, Verma SK, Garg P, Kumar SV, Jaiswal R, Purendra BK, Kumar SR, Pande NG (2010) Isotopic characteristics of Indian precipitation. Water Resour Res 46(12). https://doi.org/10.1029/2009WR008532

  • Lee J-Y, Song S-H (2007) Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ Geol 52(7):1231–1242. https://doi.org/10.1007/s00254-006-0560-2

    Article  CAS  Google Scholar 

  • Li PY, Wu JH, Qian H (2010a) Groundwater quality assessment and the forming mechanism of the hydrochemistry in Dongsheng Coalfield of Inner Mongolia. J Water Resour Water Eng 21:38–41

    Google Scholar 

  • Li PY, Qian H, Wu JH, Ding J (2010b) Geochemical modeling of groundwater in southern plain area of Pengyang County,Ningxia, China. Water Sci Eng 3:282–291. https://doi.org/10.3882/j.issn.1674-2370.2010.03.004

    CAS  Google Scholar 

  • Li PY, Wu JH, Qian H (2013) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69(7):2211–2225. https://doi.org/10.1007/s12665-012-2049-5

    Article  CAS  Google Scholar 

  • Lim JW, Lee E, Moon HS, Lee KK (2013) Integrated investigation of seawater intrusion around oil storage caverns in a coastal fractured aquifer using hydrogeochemical and isotopic data. J Hydrol 486:202–210. https://doi.org/10.1016/j.jhydrol.2013.01.023

    Article  CAS  Google Scholar 

  • Llopis-Albert C, Merigo JM, Yejun X (2016) A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertaint. J Hydrol 540:774–783

    Article  Google Scholar 

  • Loke MH, Wilkinson PB, Chambers JE (2010) Fast computation of optimized electrode arrays for 2D resistivity surveys. J Comput Geosci 36:1414–1426

  • Lyles JR (2000) Is seawater intrusion affecting ground water on Lopez Island, Washington? USGS Numbered Series, Fact Sheet FS-057-00, U.S. Geological Survey

  • Marghade D, Malpe DB, Zade AB (2012) Major ion chemistry of shallow groundwater of a fast growing city of Central India. Environ Monit Assess 184(4):2405–2418

    Article  CAS  Google Scholar 

  • Martinez D, Bocanegra E (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata Argentina. Hydrogeol J 103:393–408

    Article  Google Scholar 

  • Martos FS, Pulido Bosch A, Molina Sanchez L, VallejosIzquierdo A (2002) Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). Sci Total Environ 297(1-3):43–58. https://doi.org/10.1016/S0048-9697(01)01011-7

    Article  Google Scholar 

  • Maury S, Balaji S (2015) Application of resistivity and GPR techniques for the characterization of the coastal litho-stratigraphy and aquifer vulnerability due to seawater intrusion. Est Coa Shelf Sci 165:104–116. https://doi.org/10.1016/j.ecss.2015.09.006

    Article  Google Scholar 

  • Michael HA, Russoniello CJ, Byron LA (2013) Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. Water Reso Res 49(4):2228–2240. https://doi.org/10.1002/wrcr.20213

    Article  Google Scholar 

  • Mondal NC, Singh VS, Saxena VK, Singh VP (2011) Assessment of seawater impact using major hydrochemical ions, a case study from Sadras, Tamilnadu, India. Environ Monit Assess 177(1-4):315–335. https://doi.org/10.1007/s10661-010-1636-8

    Article  CAS  Google Scholar 

  • Mooney HM, Orellana E, Pickett H, Tornheim L (1966) A resistivity computation method for layered earth. Model Geophys 31(1):192–203. https://doi.org/10.1190/1.1439733

    Article  Google Scholar 

  • Mtoni Y, Mjemah IC, Bakundukize C, Camp MV, Martens K, Walraevens K (2013) Saltwater intrusion and nitrate pollution in the coastal aquifer of Dar es Salaam. Tanzania Environ Earth Sci 70(3):1091–1111. https://doi.org/10.1007/s12665-012-2197-7

    Article  CAS  Google Scholar 

  • Mustafa AE, Hussein HM, Stash OS, Shiekh AE, Parker B (2016) Geophysical and geochemical studies to delineate seawater intrusion in Bagoush area, Northwestern coast. Egypt. J Afr Earth Sci 121:365–381

    Article  Google Scholar 

  • Oude Essink GHP (1996) Impact of sea level rise on groundwater flow regimes: a sensitivity analysis for the Netherlands. Delft studies in Integrated Water Management, Published Delft University of Technology, Delf, p 7

  • Papatheodorou G, Lambrakis N, Panagopoulos G (2000) Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete. Greece Hydrol Proc 21:1482–1495

    Article  Google Scholar 

  • Park SC, Yun ST, Chae GT, Yoo IS, Shin KS, Heo CH, Lee SK (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol 313(3-4):182–194. https://doi.org/10.1016/j.jhydrol.2005.03.001

    Article  CAS  Google Scholar 

  • Park Y, Lee J-Y, Kim J-H, Song S-H (2012) National scale evaluation of groundwater chemistry in Korea coastal aquifers: evidences of seawater intrusion. Environ Earth Sci 66(3):707–718

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version2)—a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. United States geological survey, Washington. Water Resour Invest 99:4259–4326

    Google Scholar 

  • Piper AM (1953) A graphic procedure in the geo-chemical interpretation of water analyses. USGS Groundwater 12:14

  • Raicy MC, Elango L (2017) Percolation pond as a method of managed aquifer recharge in a coastal saline aquifer: a case study on the criteria for site selection and its impacts. J Earth Syst Sci 126:1–16. https://doi.org/10.1007/s12040-017-0845-8

    Article  Google Scholar 

  • Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River basins, southern India. Environ Geol 46:47–61

    CAS  Google Scholar 

  • Rekha PN, Ravichandran P, Gangadharan R, Bhatt JH, Panigrahi A, Pillai SM, Jayanthi M (2013) Assessment of hydrogeochemical characteristics of groundwater in shrimp farming areas in coastal Tamil Nadu, India. Aquac Int 21(5):1137–1153. https://doi.org/10.1007/s10499-012-9618-1

    Article  CAS  Google Scholar 

  • Sajil Kumar PJ (2014) Evolution of groundwater chemistry in and around Vaniyambadi industrial area: differentiating the natural and anthropogenic sources of contamination. Chem Erde 74(4):641–651. https://doi.org/10.1016/j.chemer.2014.02.002

    Article  Google Scholar 

  • Sajil Kumar PJ, Elango L, James EJ (2014) Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai, India. Arab J Geosci 7(7):2641–2653. https://doi.org/10.1007/s12517-013-0940-3

    Article  CAS  Google Scholar 

  • Sathish S, Elango L, Rajesh R, Sarma VS (2011) Assessment of seawater mixing in a coastal aquifer by high resolution electrical resistivity tomography. Int J Environ Sci Technol 8:483–492

    Article  CAS  Google Scholar 

  • Saxena VK, Mondal NC, Singh VS, Kumar D (2005) Identification of water-bearing fractures in hard rock terrain by electrical conductivity logs, India. Environ Geol 48(8):1084–1095. https://doi.org/10.1007/s00254-005-0047-6

    Article  CAS  Google Scholar 

  • Schiavo MA, Hauser S, Povinec PP (2009) Stable isotopes of water as a tool to study groundwater–seawater interactions in coastal south-eastern Sicily. J Hydrol 364(1-2):40–49. https://doi.org/10.1016/j.jhydrol.2008.10.005

    Article  Google Scholar 

  • Seckin G, Yilmaz T, Sari B, Ersu CB (2010) Groundwater hydrochemistry at the Mediterranean coastal plains the case of Silifke, Turkey. J Desalination 253(1-3):164–169. https://doi.org/10.1016/j.desal.2009.11.012

    Article  CAS  Google Scholar 

  • SenthilKumar M, Gnanasundar D, Elango L (2001) Geophysical studies to determine hydraulic characteristics of an alluvial aquifer. J Environ Hydrol 9:1–8

    Google Scholar 

  • Singh VS, Saxena VK, Prakash BA, Mondal NC, Jain SC (2004) Augmentation of ground water resources in saline ingress coastal deltaic area NGRI-Tech. Report. No. NGRI-2004-GW-422 61

  • Singhal B, Gupta RP (2010) Applied hydrogeology of fractured rocks, Springer. ISBN: 978–94–015-9210-9.

  • Soni AK, Pujari PR (2010) Ground water vis-a-vis sea water intrusion analysis for a part of limestone tract of Gujarat Coast. Ind J Water Resour Prote 2(05):462–468. https://doi.org/10.4236/jwarp.2010.25053

    Article  CAS  Google Scholar 

  • Spears DA (1986) Mineralogical control of the chemical evolution of groundwater. In: Trudgill ST (ed) Solute processes, 512. Wiley, Chichester

    Google Scholar 

  • Sun H, Alexander J, Gove B, Koch M (2015) Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application. J Contam Hydrol 180:12–24. https://doi.org/10.1016/j.jconhyd.2015.07.002

    Article  CAS  Google Scholar 

  • Todd DK (1959) Groundwater hydrology. John Wiley and Sons Inc, New York, p 293

  • Todd DK (1989) Sources of saline intrusion in the 400-foot aquifer, Castroville area,California; Report for Monterey county flood control and water conservation district, Salinas, California. 41

  • Tomaszkiewicz M, AbouNajm ME, Fadel M (2014) Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environ Model Softw 57:13–26. https://doi.org/10.1016/j.envsoft.2014.03.010

    Article  Google Scholar 

  • Vengosh A, Rosenthal A (1994) Saline groundwater in Israel: it’s bearing on the water crisis in the country. J Hydrol 156(1-4):389–430. https://doi.org/10.1016/0022-1694(94)90087-6

    Article  CAS  Google Scholar 

  • Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26

    Article  Google Scholar 

  • Yang J, Graf T, Herold M, Ptak T (2013) Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach. J Contam Hydrol 149:61–75

    Article  CAS  Google Scholar 

  • WHO (1993) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Yaouti FE, Mandour AE, Khattach D, Benavente J, Kaufmann O (2009) Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): a geostatistical, geochemical, and tomographic study. App Geochem 24(1):16–31. https://doi.org/10.1016/j.apgeochem.2008.10.005

    Article  Google Scholar 

  • Zenhom E, Salem AMA, Temamy M, Salah K, Kassa M (2016) Origin and characteristics of brackish groundwater in Abu Madi coastal area, Northern Nile Delta. Egypt. Estu Coast Shelf Sci 178:21–35. https://doi.org/10.1016/j.ecss.2016.05.015

    Article  Google Scholar 

  • Zhang W, Chen X, Tan H, Zhang Y, Cao J (2015) Geochemical and isotopic data for restricting seawater intrusion and groundwater circulation in a series of typical volcanic islands in the South China Sea. MarPol Bul 93:153–162

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried with funding under UGC-MRP University Grant Commission (UGC), New Delhi, Department of Science and Technology, New Delhi (Grant No. DST/CCP/NCC&CV/135/2017(G)) and Dr. D.S. Kothari Postdoctoral fellowship scheme of the UGC, New Delhi, Grant No. (F.4-2/2006 (BSR)/ES/14-15/0002) awarded to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Elango.

Additional information

Responsible editor: Severine Le Faucheur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagaraj, G., Elango, L., Sridhar, S.G.D. et al. Hydrogeochemical processes and influence of seawater intrusion in coastal aquifers south of Chennai, Tamil Nadu, India. Environ Sci Pollut Res 25, 8989–9011 (2018). https://doi.org/10.1007/s11356-017-0910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0910-5

Keywords

Navigation