Skip to main content

Advertisement

Log in

Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fenoxaprop-p-ethyl (FPE) was studied for possible ecotoxicity on two representative toxigenic cyanobacteria including Microcystis aeruginosa and Microcystis viridis. Growth curves, chlorophyll a content, protein content, microcystin levels, oxidative stress, and apoptosis rates were measured for the two cyanobacteria after exposure to different concentrations of FPE. Results showed that the changes in chlorophyll a content and protein content were consistent with cell density, and M. viridis was more sensitive than M. aeruginosa to FPE. The results of oxidative stress indicated that FPE induced the generation of malondialdehyde (MDA) and enhanced the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in these two cyanobacteria. To further explore the toxicity of FPE, apoptosis rates and toxin levels were measured for the two cyanobacteria. Different degrees of apoptosis rates were observed in the two cyanobacteria, and the apoptosis rates increased with the increase concentration of FPE. The intracellular and extracellular MC-LR were both affect by FPE. The presence of FPE in aquatic ecosystem may stimulate the synthesis and release of MC-LR, which may cause serious water pollution and pose threats to human health. These results may be useful for the ecotoxicity assessment of FPE and guiding the rational use of pesticides in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alscher R, Erturk N, Heath L (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem J 44:276–287

    Article  CAS  Google Scholar 

  • Betancourt M, Reséndiz A, Casas E, Fierro R (2006) Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA) in vitro. Reprod Toxicol 22:508–512

    Article  CAS  Google Scholar 

  • Beutler M, Wiltshire K, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen U, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53

    Article  CAS  Google Scholar 

  • Braconi D, Sotgiu M, Millucci L, Paffetti A, Tasso F, Alisi C, Martini S, Rappijoli R, Lusini P, Sprocati A, Rossi C, Santucci A (2006) Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain. J Agric Food Chem 54:3163–3172

    Article  CAS  Google Scholar 

  • Braconi D, Possenti S, Laschi M, Geminiani M, Lusini P, Bernardini G, Santucci A (2008) Oxidative damage mediated by herbicides on yeast cells. J Agric Food Chem 56:3836–3845

    Article  CAS  Google Scholar 

  • Bradford M (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cevik F, Tutar M (2008) Effect of fenoxaprop-p-ethyl on natural plankton of the Seyhan dam: a microcosm study. Bull Environ Contam Toxicol 80:247–250

    Article  CAS  Google Scholar 

  • Chen Y, Qin B, Teubner K, Dokulil M (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453

    Article  Google Scholar 

  • Cho U-H, Seo N-H (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Cocker K, Moss S, Coleman J (1999) Multiple mechanisms of resistance to fenoxaprop-p-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosuroides (black-grass). Pestic Biochem Physiol 65:169–180

    Article  CAS  Google Scholar 

  • Cummins I, Edwards R (2004) Purification and cloning of anesterase from the weed black-grass (Alopecurusmyosuroides), which bioactivates aryloxy phenoxy propionate herbicides. Plant J 39:894–904

    Article  CAS  Google Scholar 

  • Cuppen J, Brink PV, Woude HV, Zwaardemaker N, Broke T (1997) Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. Ecotoxicol Environ Safety 38:25–35

    Article  CAS  Google Scholar 

  • Doggett S, Rhodes R (1991) Effects of a Diazinon formulation on unialgal growth rates and phytoplankton diversity. Bull Environ Contam Toxicol 47:36–42

    Article  CAS  Google Scholar 

  • Dowson R (1998) The toxicology of microcystins. Toxicon 36:953–962

    Article  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  Google Scholar 

  • EI-Dib M, Shehata S, Abou-Waly H (1991) Response of freshwater algae (Scenedeamus spp.) to phenylurea herbicides. Water Air Soil Pollut 55:295–303

    Google Scholar 

  • Ellgehausen H, Guth J, Esser H (1980) Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains. Ecotox Environ Safe 4:134–157

    Article  CAS  Google Scholar 

  • Fadeel B, Orrenius S (2005) Apoptosis: a basic biologic phenomenon with wide-ranging implications in human disease. J Intern Med 258:479–517

    Article  CAS  Google Scholar 

  • Geoffrey A, Louise F, James S (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  Google Scholar 

  • Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151

    Article  Google Scholar 

  • Green D, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  Google Scholar 

  • Heath R, Parker L (1968) Photoperitation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 75:189–198

    Article  Google Scholar 

  • Kanazawa S, Sano S, Koshiba T, Ushimaru T (2000) Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiol Plant 109:211–216

    Article  CAS  Google Scholar 

  • Kearns K, Hunter M (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297

    Article  CAS  Google Scholar 

  • Kirby M, Sheahan D (1994) Effects of atrazine isoproturon, and mecoprop on the macrophyte Lemna minor and the alga Scenedesmus subspicatus. Bull Environ Contam Toxicol 53:120–126

    Article  CAS  Google Scholar 

  • Kobraei M, White D (1996) Effects of 2, 4-dichlorohenoxyacetic acid on Kentucky algae: armukaneous laboratory and field toxicity testings. Arch Environ Contam Toxicol 31:571–580

    Article  CAS  Google Scholar 

  • Kwak S (1995) Acidic peroxidases from suspension-cultures of sweet potato. Phytochemistry 39(5):981–984

    Article  CAS  Google Scholar 

  • Leist K (1980) Toxicity test of HOE 33171 OH AT 203 in a 32-day study with SPF-mice

  • Lin J, Chen J, Cai X, Qiao X, Huang L, Wang D, Wang Z (2007) Evolution of toxicity upon hydrolysis of fenoxaprop-P-ethyl. J Agric Food Chem 55:7626–7629

    Article  CAS  Google Scholar 

  • Lorenzen C (1967) Determination of chlorophyll-a and phaeopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Malanga G, Calmanovici G, Puntarulo S (1997) Oxidative damage to chloroplasts from Chlorella vulgaris exposed to ultraviolet-B radiation. Physiol Plant 101:455–462

    Article  CAS  Google Scholar 

  • Mohapatra P, Schubert H, Schiewer U (1997) Effect of dimethoate on photosynthesis and pigment fluorescence of Synechocystis sp. PCC 6803. Ecotoxicol Environ Saf 36:231–237

    Article  CAS  Google Scholar 

  • Mowe M, Porojan C, Abbas F, Mitrovic S, Lim R, Furey A, Yeo D (2015) Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species. Harmful Algae 50:88–98

    Article  CAS  Google Scholar 

  • Nakai S, Inoue Y, Hosomi M, Murakami A (1999) Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Sci Technol 39:47–53

    Article  Google Scholar 

  • OECD (2011) Guiding for the testing of chemicals. Freshwater alga and cyanobacteria, growth inhibition test. 201

  • Okmen G, Turkcan O, Erdal P (2013) Effect of herbicides on chlorophyll-a, β- caroten, phycocyanin and allophycocyanin content of Anabaena sp. J Appl Biol Sci 7:20–27

    CAS  Google Scholar 

  • Ou H, Gao N, Wei C, Deng Y, Qiao J (2012) Immediate and long-term impacts of potassium permanganate on photosynthetic activity, survival and microcystin-LR release risk of Microcystis aeruginosa. J Hazard Mater 219:267–275

    Article  Google Scholar 

  • Ozair C, Moshier L (1998) Effect of soil incorporate trifluralin and selected postemergent herbicide on growth nodulation and nitrogen fixation of soybean. Pak J Agric Res 9:316–320

    Google Scholar 

  • Pichardo S, Jos A, Zurita J, Salguero M, Camean A, Repetto G (2005) The use of the fish cell lines RTG-2 and PLHC-1 to compare the toxic effects produced by microcystins LR and RR. Toxicol in Vitro 19:865–873

    Article  CAS  Google Scholar 

  • Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  CAS  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VTS, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26

    Article  CAS  Google Scholar 

  • Rabinowitch HD, Clare DA, Crapo JD, Fridovich I (1983) Positive correlation between superoxide dismutase and resistance to paraquat toxicity in the green alga Chlorella sorokiniana. Arch Biochem Biophys 225:640–648

    Article  CAS  Google Scholar 

  • Ross C, Santiago-Vazquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aerugiosa. Aquat Toxicol 78:66–73

    Article  CAS  Google Scholar 

  • Samson G, Popovic R (1988) Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants. Ecotoxicol Environ Saf 16(3):272–278

    Article  CAS  Google Scholar 

  • Shiu C, Lee T (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate-glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865

    Article  CAS  Google Scholar 

  • Song L, Hua R, Zhao Y (2005) Biodegradation of fenoxaprop-p-ethyl by bacteria isolated from sludge. J Hazard Mater 118:247–251

    Article  CAS  Google Scholar 

  • Sun H, Liu T, Guan Y, Liu B (2013) Physiological response to herbicides of Isoetes sinensis palmer critically endangered ferns (in Chinese). Acta Bot Boreal Occident Sin 33:1830–1837

    CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Wang Y, Chen JW, Lin J, Cai XY (2009) Evolutive process and mechanism of Photoinduced toxicity of fenoxaprop-p-ethyl and 1-amino-2,4-dibromoanthraquinone. Res Environ Sci 22:843–846

    CAS  Google Scholar 

  • Wang S, Zheng B, Chen C, Dohmann M, Kolditz O (2015) Thematic issue: water of the Erhai and Dianchi Lakes. Environ Earth Sci 74:3685–3688

    Article  Google Scholar 

  • Wetscher GJ, Bagchi M, Bagchi D, Perdikis G, Hinder PR, Glaser K, Hinder RA (1995) Free radical production in nicotine treated pancreatic tissue. Free Radic Biol Med 18:877–882

    Article  CAS  Google Scholar 

  • Wrong S, Beaver J (1980) Algal bioassays to determine toxicity of heavy metals mixtures. Hydrobiologia 74:199–208

    Article  Google Scholar 

  • Wu L, Qiu ZH, Zhou Y, Du YP, Liu CN, Ye J, Hu XJ (2016) Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 178:72–79

    Article  CAS  Google Scholar 

  • Xu Y, Yang F, Liu Y, Wang Z, Wang J, Wang G, Li R (2011) Genetic diversity of Microcystis populations in a bloom and its relationship to the environmental factors in Qinhuai River, China. Microbiol Res 167:20–26

    Article  Google Scholar 

  • Ye J, Wang L, Zhang Z, Liu W (2013) Enantioselective physiological effects of the herbicide diclofop on cyanobacterium Microcystis aeruginosa. Environ Sci Technol 47:3893–3901

    Article  CAS  Google Scholar 

  • Ye J, Zhang Y, Chen S, Liu C, Zhu Y, Liu W (2014) Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid. Aquat Toxicol 146:12–19

    Article  CAS  Google Scholar 

  • Yun M, Yogo Y, Miura R, Yamasue Y, Fischer A (2005) Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pestic Biochem and Physiol 83:107–114

    Article  CAS  Google Scholar 

  • Zhang D, Xie P, Chen J (2010) Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. Bull Environ Contam Toxicol 84:202–207

    Article  CAS  Google Scholar 

  • Zhang P, Zhai C, Chen R, Liu C, Xue Y, Jiang J (2012) The dynamics of the water bloom-forming Microcystis aeruginosa and its relationship with biotic and abiotic factors in Lake Taihu, China. Ecol Eng 47:274–277

    Article  Google Scholar 

  • Zhang J, Guo S, Guo P, Wang X (2014) The interacting effect of urea and fenoxaprop-P-ethyl on photosynthesis and chlorophyll fluorescence in Perilla frutescens. Photosynthetica 52:456–463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Sarah S for the revision of the manuscript by language. This work was supported by the National Natural Science Foundation of China (21307082, 20977062).

Authors’ contributions

YD carried out the growth studies and drafted the manuscript. JY conceived of the study, design the study, and helped to draft the manuscript. WL carried out the MC-LR studies. CY participated in the design of the study and participated in the chlorophyll a content studies. LW performed the statistical analysis. XH participated in the protein and MC-LR studies. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ye.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Xiaojun Hu provided some financial support to our work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Ye, J., Wu, L. et al. Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl. Environ Sci Pollut Res 24, 7752–7763 (2017). https://doi.org/10.1007/s11356-017-8474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8474-y

Keywords

Navigation