Skip to main content
Log in

The effect of arsenic chemical form and mixing regime on arsenic mass transfer from soil to magnetite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the effect of chemical forms of arsenic (As) and soil-magnetite mixing regimes on As mass transfer in magnetite-amended soil. Two soil samples with different component ratios of As chemical forms were prepared. In the absence of magnetite, the amount of desorbable As was strongly dependent on the fraction of easily extractable As in soil. Contact of the soils with magnetite in a slurry phase significantly reduced soil As concentration for both soils. Changes in As concentrations in soil, magnetite, and water by the slurry phase contact were simulated using an As mass transfer model. The model parameters were determined independently for each process of As soil desorption and magnetite sorption. The experimentally measured As mass transfer from soil to magnetite was significantly greater than the simulation result. By sequential extraction, it was observed that the soil As concentration was significantly reduced not only for easily extractable As, but also for relatively strongly bound forms of As. Enclosing the magnetite in a dialysis bag substantially limited the As mass transfer from soil to magnetite. These results suggest that improving the mixture between Fe oxides and soils can facilitate the effectiveness of As stabilization using Fe oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in the terrestrial environment. Trace elements in the terrestrial environment, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 29–30:208–213. doi:10.1016/j.jclepro.2012.01.029

    Article  Google Scholar 

  • Catalano JG, Park C, Fenter P, Zhang Z (2008) Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite. Geochim Cosmochim Acta 72:1986–2004. doi:10.1016/j.gca.2008.02.013

    Article  CAS  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. doi:10.1021/es030309t

    Article  CAS  Google Scholar 

  • Fendorf S, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31:315–320. doi:10.1021/es950653t

    Article  CAS  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857. doi:10.1039/B207574C

    Article  CAS  Google Scholar 

  • Gee GW, Or D (2002) 2.4 particle-size analysis. In: Dane JH, Topp CG (eds) Methods of soil analysis: part 4 physical methods. SSSA Book Series. Soil Science Society of America, Madison, pp 255–293. doi:10.2136/sssabookser5.4.c12

    Google Scholar 

  • Giménez J, Martínez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580. doi:10.1016/j.jhazmat.2006.07.020

    Article  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216. doi:10.1006/jcis.2000.7295

    Article  CAS  Google Scholar 

  • Hartley W, Lepp NW (2008a) Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Environ Pollut 156:1030–1040. doi:10.1016/j.envpol.2008.04.024

    Article  CAS  Google Scholar 

  • Hartley W, Lepp NW (2008b) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390:35–44. doi:10.1016/j.scitotenv.2007.09.021

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76:183–191. doi:10.1205/095758298529326

    Article  CAS  Google Scholar 

  • Hudson-Edwards KA, Houghton SL, Osborn A (2004) Extraction and analysis of arsenic in soils and sediments. TrAC Trends Anal Chem 23:745–752. doi:10.1016/j.trac.2004.07.010

    Article  CAS  Google Scholar 

  • ISO (International Organization for Standardization) (1995) Soil quality - Extraction of trace elements soluble in aqua regia; ISO 11466

  • Jho EH, Im J, Yang K, Kim Y-J, Nam K (2015) Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions. Chemosphere 119:1399–1405. doi:10.1016/j.chemosphere.2014.10.038

    Article  CAS  Google Scholar 

  • Jiang W, Zhang S, Shan X, Feng M, Zhu Y, McLaren RG (2005) Adsorption of arsenate on soils. Part 1: laboratory batch experiments using 16 Chinese soils with different physiochemical properties. Environ Pollut 138:278–284. doi:10.1016/j.envpol.2005.03.007

    Article  CAS  Google Scholar 

  • Kelley ME, Brauning S, Schoof R, Ruby M (2002) Assessing oral bioavailability of metals in soil. Battelle Press, Columbus, OH

    Google Scholar 

  • Keon NE, Swartz CH, Brabander DJ, Harvey C, Hemond HF (2001) Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ Sci Technol 35:2778–2784. doi:10.1021/es001511o

    Article  CAS  Google Scholar 

  • Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environ Pollut 172:9–22. doi:10.1016/j.envpol.2012.07.045

    Article  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225. doi:10.1016/j.wasman.2006.12.012

    Article  CAS  Google Scholar 

  • Liu G, Zhang H (2008) The adsorption of arsenic on magnetic iron-manganese oxide in aqueous medium. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists, Proceedings of the International Multi Conference of Engineers and Computer Scientists 2008, Hong Kong, 2008

  • Maiti A, Basu JK, De S (2010) Desorption kinetics and leaching study of arsenic from arsenite/arsenate-loaded natural laterite. Int J Environ Technol Manag 12:294–307. doi:10.1504/IJETM.2010.031534

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281:93–99. doi:10.1016/j.desal.2011.07.046

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi:10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  • Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36:5455–5461. doi:10.1021/es0206846

    Article  CAS  Google Scholar 

  • Mench M et al (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202. doi:10.1023/A:1022566431272

    Article  CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2010) Remediation of arsenic-contaminated soils by iron amendments: a review. Crit Rev Environ Sci Technol 40:93–115. doi:10.1080/10643380802202059

    Article  CAS  Google Scholar 

  • Ohe K, Oshima T, Baba Y (2010) Adsorption of arsenic using high surface area magnetites. Environ Geochem Health 32:283–286. doi:10.1007/s10653-010-9298-6

    Article  CAS  Google Scholar 

  • Sherman DM, Randall SR (2003) Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67:4223–4230. doi:10.1016/S0016-7037(03)00237-0

    Article  CAS  Google Scholar 

  • Shipley H, Engates K, Guettner A (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13:2387–2397. doi:10.1007/s11051-010-9999-x

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Su C, Puls R (2008) Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation. Water Air Soil Pollut 193:65–78. doi:10.1007/s11270-008-9668-1

    Article  CAS  Google Scholar 

  • Trixler F, Markert T, Lackinger M, Jamitzky F, Heckl WM (2007) Supramolecular self-assembly initiated by solid-solid wetting. Chem Eur J 13:7785–7790. doi:10.1002/chem.200700529

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1996) Method 3052. Microwave assisted acid digestion of siliceous and organically based matrices. US Environmental Proteciton Agency, Washington, DC

    Google Scholar 

  • USEPA (2002) Arsenic treatment technologies for soil, waste, and water. US Environmental Proteciton Agency, Washington, DC

    Google Scholar 

  • Voegelin A, Hug SJ (2003) Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR-FTIR study. Environ Sci Technol 37:972–978. doi:10.1021/es025845k

    Article  CAS  Google Scholar 

  • Wang Y, Morin G, Ona-Nguema G, Juillot F, Calas G, Brown GE (2011) Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes. Environ Sci Technol 45:7258–7266. doi:10.1021/es200299f

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323. doi:10.1016/S0003-2670(01)00924-2

    Article  CAS  Google Scholar 

  • Yang K, Im J, Jeong S, Nam K (2015) Determination of human health risk incorporating experimentally derived site-specific bioaccessibility of arsenic at an old abandoned smelter site. Environ Res 137:78–84. doi:10.1016/j.envres.2014.11.019

    Article  CAS  Google Scholar 

  • Zhang H, Selim HM (2005) Kinetics of arsenate adsorption−desorption in soils. Environ Sci Technol 39:6101–6108. doi:10.1021/es050334u

    Article  CAS  Google Scholar 

  • Zhang S, X-y L, Chen JP (2010) Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. Carbon 48:60–67. doi:10.1016/j.carbon.2009.08.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received financial support from the Geo-Advanced Innovative Action (GAIA) Project of the Korea Environmental Industry & Technology Institute. The authors wish to express their gratitude for the technical support by the Institute of Construction and Environmental Engineering at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongju Choi.

Ethics declarations

Funding source

This study received financial support from the Geo-Advanced Innovative Action (GAIA) Project of the Korea Environmental Industry & Technology Institute (KEITI).

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Kim, BC., Nam, K. et al. The effect of arsenic chemical form and mixing regime on arsenic mass transfer from soil to magnetite. Environ Sci Pollut Res 24, 8479–8488 (2017). https://doi.org/10.1007/s11356-017-8510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8510-y

Keywords

Navigation