Skip to main content
Log in

Comparative study of adsorptive removal of Cr(VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cr(VI) is a toxic water pollutant, which causes cancer and mutation in living organisms. Adsorption has become the most preferred method for removal of Cr(VI) due to its high efficiency and low cost. Peanut and almond shells were used as adsorbents in downflow fixed bed continuous column operation for Cr(VI) removal. The experiments were carried out to scrutinise the adsorptive capacity of the peanut shells and almond shells, as well as to find out the effect of various operating parameters such as column bed depth (5–10 cm), influent flow rate (10–22 ml min−1) and influent Cr(VI) concentration (10–20 mg L−1) on the Cr(VI) removal. The fixed bed column operation for Cr(VI) adsorption the equilibrium was illustrated by Langmuir isotherm. Different well-known mathematical models were applied to the experimental data to identify the best-fitted model to explain the bed dynamics. Prediction of the bed dynamics by Yan et al. model was found to be satisfactory. Applicability of artificial neural network (ANN) modelling is also reported. An ANN modelling of multilayer perceptron with gradient descent and Levenberg-Marquardt algorithms have also been tried to predict the percentage removal of Cr(VI). This study indicates that these adsorbents have an excellent potential and are useful for water treatment particularly small- and medium-sized industries of third world countries. Almond shell represents better adsorptive capacity as breakthrough time and exhaustion time are longer in comparison to peanut shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a :

Modified dose–response model parameter

A :

Cross-sectional area of the bed (cm2)

AARE:

Average absolute relative error, \( \mathrm{AARE}=\frac{1}{N}\sum_{i=1}^N\left|\frac{\left({y}_1-{x}_i\right)}{x_i}\right| \), dimensionless

C 0 :

Influent Cr(VI) concentration (mg L−1)

C t :

Effluent concentration at time t (mg L−1)

C eq :

Equilibrium concentration (mg L−1)

K B :

Rate constant (L mg−1 min−1)

K L :

Langmuir isotherm constant (L mg−1)

K Y :

Yan et al. model kinetic rate constant (ml mg−1 min−1)

k AB :

Kinetic constant in Bohart-Adams model (L mg−1 min−1)

k Th :

Thomas model rate constant (ml mg−1 min−1)

k YN :

Rate constant in Yoon-Nelson model (min−1)

m :

Mass of the adsorbent (g)

MSE:

Mean square error, \( \mathrm{MSE}=\frac{1}{N}\sum_{i=1}^N{\left({x}_i-{y}_i\right)}^2 \), dimensionless

SE:

Standard error, \( \mathrm{SE}=\sqrt{\sum \frac{{\left({q}_{0\left( \exp \right)}-{q}_{0\left(\mathrm{cal}\right)}\right)}^2}{N}} \), dimensionless

m total :

Total amount of Cr(VI) ion sent to the column (mg)

N 0 :

Adsorption capacity (mg L−1)

N :

Number of experimental points run

Q :

Volumetric flow rate (ml min−1)

q 0 :

Adsorption capacity (mg g−1)

q 0(exp) :

Experimental adsorption capacity (mg g−1)

q 0(cal) :

Adsorption capacity calculated using theoretical kinetic models (mg g−1)

q Y :

Maximum adsorption capacity in Yan et al. model (mg g−1)

q exp :

Equilibrium Cr(VI) uptake (mg g−1)

q max :

Maximum adsorption capacity (mg g−1)

q mdr :

Adsorption capacity in modified dose–response model (mg g−1)

q total :

Total Cr(VI) adsorbed (mg)

R 2 :

Correlation coefficient, \( R=\frac{\sum_{i=1}^N\left({x}_i-\overline{x}\right)\left({y}_i-\overline{y}\right)}{\sqrt{\sum_{i=1}^N{\left({x}_i-\overline{x}\right)}^2\sum_{i=1}^N{\left({y}_i-\overline{y}\right)}^2}} \), dimensionless

t :

Time (min)

t total :

Total flow time (min)

TF1 :

Transfer function 1 in hidden layer, \( {f}_{1\mathrm{h}}(x)= \tanh \beta x=\frac{e^{\beta x}-{e}^{-\beta x}}{e^{\beta x}+{e}^{-\beta x}} \), dimensionless

TF2 :

Transfer function 2 in hidden layer, \( {f}_{2\mathrm{h}}(x)=\beta x,\kern0.5em \mathrm{where}\kern0.24em \begin{array}{l}\beta x=1\;\mathrm{for}\;\beta x>1\hfill \\ {}\beta x=-1\;\mathrm{for}\;\beta x>-1\hfill \end{array} \), dimensionless

TF3 :

Transfer function 3 in hidden layer, \( {f}_{3\mathrm{h}}(x)=\beta x,\kern0.5em \mathrm{where}\;\begin{array}{l}\beta x=0\;\mathrm{for}\;\beta x>0\hfill \\ {}\beta x=1\;\mathrm{for}\;\beta x>1\hfill \end{array} \), dimensionless

TF4 :

Transfer function 4 in hidden layer, \( {f}_{4\mathrm{h}}(x)=\frac{1}{1+{e}^{-\beta x}} \), dimensionless

U 0 :

Superficial velocity (cm min−1)

V eff :

Effluent volume (L)

Z :

Bed depth (cm)

β :

Kinetic coefficient of external mass transfer in Wolborska model (min−1)

τ :

Fifty percent breakthrough time (min)

χ 2 :

\( {\chi}^2=\sum_{i=1}^N\frac{{\left({x}_i-{y}_i\right)}^2}{y_i} \), dimensionless

σ :

\( \sigma =\sqrt{\sum_{i=1}^N\frac{1}{N-1}\left[\left|\frac{\left({y}_i-{x}_i\right)}{x_i}\right|-\mathrm{AARE}\right]} \), dimensionless

References

  • Ahmed AA, Hameed BH (2010) Fixed bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J Haz Mater 175:298–303

    Article  Google Scholar 

  • Ahmed SA, Nisa VU (2013) Removal of chromium from tannery effluents of industrial region district kasur Punjab. Amer Eura J Tox Sc 5(2):41–47

  • Al-Othman ZA, Ali R, Naushad M (2012) Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J 184:238–247

    Article  CAS  Google Scholar 

  • American Public Health Association, American Water Works Association, Water Environment Federation (1998) Standard methods for examination of water and wastewater, 20th edn. APHA, AWWA, Washington D.C, New York

    Google Scholar 

  • Bar N, Das SK (2011) Comparative study of friction factor by prediction of frictional pressure drop per unit length using empirical correlation and ANN for gas-non-Newtonian liquid flow through 180° circular bend. Int Review Chem Engg 3(6):628–643

    Google Scholar 

  • Bar N, Das SK (2012a) Gas-non-Newtonian liquid flow through horizontal pipe—gas holdup and pressure drop prediction using multilayer perceptron. Am J Fluid Dynamics 2(3):7–16

    Article  Google Scholar 

  • Bar N, Das SK (2012b) Frictional pressure drop for gas-non-Newtonian liquid flow through 90° and 135° circular bend: prediction using empirical correlation and ANN. Int J Fluid Mech Res 39:416–437

    Article  Google Scholar 

  • Bar N, Biswas MN, Das SK (2010) Prediction of pressure drop using artificial neural network for gas-non-newtonian liquid flow through piping components. Ind Eng Chem Res 49:9423–9429

    Article  CAS  Google Scholar 

  • Bar N, Das SK, Biswas MN, (2013) Prediction of Frictional Pressure Drop Using Artificial Neural Network for Air-water Flow through U-bends. Proc Technol 10:813–821

  • Baral SS, Das N, Ramulu TS, Sahoo SK, Das SN, Chaudhury GR (2009) Removal of Cr(VI) by thermally activated weed Salvinia cucullata in a fixed bed column. J Haz Mater 161:1427–1435

    Article  CAS  Google Scholar 

  • Bhattacharyya AK, Naiya TK, Mondal SN, Das SK (2008) Adsorption kinetics and equilibrium studies on removal of chromium(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137:529–541

    Google Scholar 

  • Bishnoi N, Bajaj M, Sharma N, Gupta A (2004) Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. BioresTechnol 91:305–307

    CAS  Google Scholar 

  • Bohart GS, Adams EQ (1920) Behaviour of charcoal towards chlorine. J Chem Soc 42:523–529

    Article  CAS  Google Scholar 

  • Chen N, Zhang ZY, Feng CP, Li M, Chen RZ, Sugiura N (2011) Investigation on the batch and column performance of fluoride adsorption by Kanuma mud. Desalination 268:76–82

    Article  CAS  Google Scholar 

  • Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K (2012) Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed bed column study. BioresTechnol 113:114–120

    CAS  Google Scholar 

  • Cieslak-Golonka M (1995) Toxic and mutagenic effects of chromium (VI). Polyhedron 15:3667–3689

    Article  Google Scholar 

  • Cimino G, Passerini A, Toscano G (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34:2955–2962

    Article  CAS  Google Scholar 

  • Dakiky M, Khamis M, Mereb M (2002) Selective adsorption of chromium (IV) in industrial waste water using low cost abundantly available adsorbents. Adv Env Res 6:533–540

    Article  CAS  Google Scholar 

  • Dupont I, Guillon E (2003) Removal of hexavalent chromium with a lignocellusic substrate extracted from wheat bran. Environ Sci Technol 37:4235–4241

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1990) Environmental pollution control alters, EPA/625/5-90/025, EPA/625/4-89/023, Cincinnati

  • Gode F, Pehlivan E (2005) Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. J Haz Mater B119:175–182

    Article  Google Scholar 

  • Han RP, Wang Y, Zhao X, Wang YF, XIE FL, Cheng JM, Tang MS (2009a) Adsorption of methylene blue by phoenix tree leaf powder in a fixed bed column: experiments and prediction of break through curves. Desalination 245:284–297

    Article  CAS  Google Scholar 

  • Han RP, Zou LN, Zhao X, Xu YF, Xu F, Li YL, Wang Y (2009b) Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column. Chem Eng J 149:123–131

    Article  CAS  Google Scholar 

  • IS 10500 (Indian Standard) (1991) Drinking water specification (first revision)

  • Kafshgari F, Keshtkar AR, Musavian MA (2013) Study of Mo(VI) removal from aqueous solution: application of different mathematical models to continuous biosorption data. Iranian J Environ Health Sci Eng 10(14):1–11

    Google Scholar 

  • Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. J Haz Mater 124(1–3):192–199

    Article  CAS  Google Scholar 

  • Khejami L, Capart R (2005) Removal of Cr(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. J Haz Mater 123(1–3):223–231

    Google Scholar 

  • Kumar PA, Chakraborty S (2009) Fixed bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber. J Haz Mater 162:1086–1098

    Article  CAS  Google Scholar 

  • Kyzas GZ, Kostoglou M (2014) Green adsorbents for wastewaters: a critical review. Materials 7:333–364

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1368

    Article  CAS  Google Scholar 

  • Lauwerys R, Haufroid V, Hoet P, Lison D (2007) Toxicologieindustrielle et intoxications professionnelles, 5th edn. Elsevier-Masson, Paris

    Google Scholar 

  • Lin X, Li R, Wen Q, Wu J, Fan J, Jin X, Qian W, Liu D, Chen X, Chen Y, Xie J, Bai J, Ying H (2013) Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed bed of KA-I resin. Biotechnol Bioproc Engg 18:223–233

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y, Abali Y (2006a) Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves. Chem Eng J 119:61–68

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y, Dundar M (2006b) Adsorption of chromium(VI) on pomace—an olive oil industry waste: batch and column study. J Haz Mater B138:142–151

    Article  Google Scholar 

  • Mallick S, Dash SS, Parida KM (2006) Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3-SO2 leaching. J ColInterface Sci 297:419–425

    Article  CAS  Google Scholar 

  • Mazumder D, Ghosh D, Bandyopadhyay P (2011) Treatment of electroplating waste water by adsorption technique. Int J Civil Environ Eng 3(2):101–110

    Google Scholar 

  • MINAS (2001) Pollution control acts, rules, and notification there under Central Pollution Control Board, 2001. Ministry of Environment and Forests, Government of India, New Delhi

    Google Scholar 

  • Mishra V, Balomajumde C, Agarwal VK (2013) Adsorption of Cu (II) on the surface of nonconventional biomass: a study on forced convective mass transfer in packed bed column. J Waste Manag. doi:10.1155/2013/632163

    Google Scholar 

  • Mo I, Ahmed A, Saeed M (2013) Removal of Cr(VI) from aqueous solutions using peanut shell as adsorbent. J Chem Soc Pak 35(3):760–768

    Google Scholar 

  • Nag S, Mondal A, Mishra U, Bar N, Das SK (2016) Removal of chromium(VI) from aqueous solutions using rubber leaf powder: batch and column studies. Desalin Water Treat 57(36):16927–16942

    CAS  Google Scholar 

  • Raji C, Anirudhan TS (1998) Batch chromium (VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Res 32:3772–3780

    Article  CAS  Google Scholar 

  • Sarkar S, Das SK (2015) Removal of Cr(VI) and Cu(II) ions from aqueous solution by rice husk ash-column studies. Desalination Water Treat 57(43):20340–20349

    Article  Google Scholar 

  • Shanmugam D, Alagappan M, Rajan RK (2016) Bench-scale packed bed sorption of Cibacron blue F3GA using lucrative algal biomass. Alexandria Engg J. doi:10.1016/j.aej.2016.05.012

    Google Scholar 

  • Singha B, Das SK (2011) Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies. Col Surf B: Biointerfaces 84:221–232

    Article  CAS  Google Scholar 

  • Singha B, Das SK (2013) Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Col Surf B: Biointerfaces 107:97–106

    Article  CAS  Google Scholar 

  • Siraj S, Islam Md M, Das PC, Mausam Sh Md, Jahan IA, Ahsan Md A, Shajahan Md, (2012) Removal of chromium from tannery effluent using chitosan-charcoal composite. J Bangladesh Chem Soc 25(1):53–61

  • Suksabye P, Thiravetyan P, Nakbanpote W (2008) Column study of chromium (VI) adsorption from electroplating industry by coconut coir pith. J Haz Mater 160:56–62

    Article  CAS  Google Scholar 

  • Swathi M, Sathya S A, Aravind S, Ashi SPK, Gobinath R, Saranya D D (2014) Adsorption studies on tannery wastewater using rice husk. Sch J Eng Tech 2(2B):253–257

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164. doi:10.1007/978-3-7643-8340-4_6

    Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1466–1664

    Google Scholar 

  • Uddin MT, Rukanuzzaman M, Khan MM, Islam MA (2009) Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed bed column study. J Environ Manag 90:3443–3450

    Article  CAS  Google Scholar 

  • Vinodini V, Das N (2010) Packed bed column studies on Cr(VI) removal from tannery waste water by neem saw dust. Desalination 264:9–14

    Article  Google Scholar 

  • Wolborska A (1989) Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Res 23:85–91

    Article  CAS  Google Scholar 

  • Yan GY, Viraraghavan T, Chem M (2001) A new model for heavy metal removal in a biosorption column. Ads Sci Technol 19:25–43

    Article  CAS  Google Scholar 

  • Yoon YH, Nelson JH (1984) Application of gas adsorption kinetics II. A theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J 45:509–516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledging the Department of Science & Technology, West Bengal (Sanction No. 21 (Sanc)/ST/P/S&T/13G-1/2013 dt. 06.06.2014) for providing the research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kumar Das.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, M., Bar, N., Basu, R.K. et al. Comparative study of adsorptive removal of Cr(VI) ion from aqueous solution in fixed bed column by peanut shell and almond shell using empirical models and ANN. Environ Sci Pollut Res 24, 10604–10620 (2017). https://doi.org/10.1007/s11356-017-8582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8582-8

Keywords

Navigation