Skip to main content

Advertisement

Log in

Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study investigated the comprehensive chemical composition [organic carbon (OC), elemental carbon (EC), water-soluble inorganic ionic components (WSICs), and major & trace elements] of particulate matter (PM2.5) and scrutinized their emission sources for urban region of Delhi. The 135 PM2.5 samples were collected from January 2013 to December 2014 and analyzed for chemical constituents for source apportionment study. The average concentration of PM2.5 was recorded as 121.9 ± 93.2 μg m−3 (range 25.1–429.8 μg m−3), whereas the total concentration of trace elements (Na, Ca, Mg, Al, S, Cl, K, Cr, Si, Ti, As, Br, Pb, Fe, Zn, and Mn) was accounted for ∼17% of PM2.5. Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon seasons. The chemical composition of the PM2.5 was reconstructed using IMPROVE equation, which was observed to be in good agreement with the gravimetric mass. Source apportionment of PM2.5 was carried out using the following three different receptor models: principal component analysis with absolute principal component scores (PCA/APCS), which identified five major sources; UNMIX which identified four major sources; and positive matrix factorization (PMF), which explored seven major sources. The applied models were able to identify the major sources contributing to the PM2.5 and re-confirmed that secondary aerosols (SAs), soil/road dust (SD), vehicular emissions (VEs), biomass burning (BB), fossil fuel combustion (FFC), and industrial emission (IE) were dominant contributors to PM2.5 in Delhi. The influences of local and regional sources were also explored using 5-day backward air mass trajectory analysis, cluster analysis, and potential source contribution function (PSCF). Cluster and PSCF results indicated that local as well as long-transported PM2.5 from the north-west India and Pakistan were mostly pertinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alleman LY, Lamaison L, Perdrix E, Robache A, Galloo JC (2010) PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos Res 96(4):612–625

    CAS  Google Scholar 

  • Amodio M, Andriani E, De Gennaro G, Di Gilio A, Ielpo P, Placentino CM, Tutino M (2013) How a steel plant affects air quality of a nearby urban area: a study on metals and PAH concentrations. Aerol Air Qual Res 13(2):497–508

    CAS  Google Scholar 

  • Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Scheike T, Loft S (2007) Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J Expo Sci Environ Epidemiol 17(7):625–636

    CAS  Google Scholar 

  • Ashbaugh LL, Malm WC, Sadeh WZ (1985) A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos Environ 19(8):1263–1270

    CAS  Google Scholar 

  • Balachandran S, Meena BR, Khillare PS (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environ Internat 26(1):49–54

    CAS  Google Scholar 

  • Banerjee T, Murari V, Kumar M, Raju MP (2015) Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos Res 164:167–187

    Google Scholar 

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38(19):3025–3038

    CAS  Google Scholar 

  • Begum BA, Biswas SK, Markwitz A, Hopke PK (2010) Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Qual Res 10(4):345–353

    CAS  Google Scholar 

  • Begum BA, Biswas SK, Hopke PK (2011) Key issues in controlling air pollutants in Dhaka, Bangladesh. Atmos Environ 45(40):7705–7713

    CAS  Google Scholar 

  • Behera SN, Sharma M (2010) Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci Total Environ 408(17):3569–3575

    CAS  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108

    CAS  Google Scholar 

  • Beuck H, Quass U, Klemm O, Kuhlbusch TA (2011) Assessment of sea salt and mineral dust contributions to PM10 in NW Germany using tracer models and positive matrix factorization. Atmos Environ 45:5813–5821

    CAS  Google Scholar 

  • Bove MC, Brotto P, Cassola F, Cuccia E, Massabò D, Mazzino A, Prati P (2014) An integrated PM2.5 source apportionment study: positive matrix factorisation vs. the chemical transport model CAMx. Atmos Environ 94:274–286

    CAS  Google Scholar 

  • Brankov E, Rao ST, Porter PS (1998) A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants. Atmos Environ 32(9):1525–1534

    CAS  Google Scholar 

  • Brauer M, Freedman G, Frostad J, Van Donkelaar A, Martin RV, Dentener F, Balakrishnan K (2015) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50(1):79–88

    Google Scholar 

  • Brown SG, Frankel A, Raffuse SM, Roberts PT, Hafner HR, Anderson DJ (2007) Source apportionment of fine particulate matter in Phoenix, AZ, using positive matrix factorization. J Air Waste Manage Assoc 57:741–752

    CAS  Google Scholar 

  • Buseck PR, POsfai M (1999) Air borne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci 96(7):3372–3379

    CAS  Google Scholar 

  • Callén MS, De La Cruz MT, López JM, Navarro MV, Mastral AM (2009) Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere 76(8):1120–1129

    Google Scholar 

  • Cesari D, Amato F, Pandolfi M, Alastuey A, Querol X, Contini D (2016) An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environ Sci Poll Res:1–16

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region, India. Aero Air Qual Res 10(5):433–445

    CAS  Google Scholar 

  • Chan YC, Simpson RW, McTainsh GH, Vowles PD, Cohen DD, Bailey GM (1997) Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmos Environ 31(22):3773–3785

    CAS  Google Scholar 

  • ChanT W, Mozurkewich M (2007) Application of absolute principal component analysis to size distribution data: identification of particle origins. Atmos Chem Phy 7(3):887–897

    Google Scholar 

  • Chelani AB, Gajghate DG, Devotta S (2008) Source apportionment of PM10 in Mumbai, India using CMB model. Bull Environ Contami Toxicol 81(2):190–195

    CAS  Google Scholar 

  • Chen LWA, Watson JG, Chow JC, Magliano KL (2007) Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ Sci Technol 41(8):2818–2826

    CAS  Google Scholar 

  • Chen LWA, Watson JG, Chow JC, DuBois DW, Herschberger L (2010) Chemical mass balance source apportionment for combined PM2.5 measurements from US non-urban and urban long-term networks. Atmos Environ 44(38):4908–4918

    Google Scholar 

  • Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD (2013) Source apportionment of PM2.5 at the coastal area in Korea. Sci Total Environ 447:370–380

    CAS  Google Scholar 

  • Chow JC, Watson JG, Fujita EM, Lu Z, Lawson DR, Ashbaugh LL (1994) Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmos Environ 28(12):2061–2080

    CAS  Google Scholar 

  • Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, Solomon PA, Magliano K (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ 30(12):2079–2112

    CAS  Google Scholar 

  • Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmüller H, Fung K (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Science Technol 38(16):4414–4422

    CAS  Google Scholar 

  • Chowdhury Z, Zheng M, Schauer J J, Sheesley R J, Salmon L G, Cass G R, Russell A G (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J Geophy Res: Atmos 112(D15)

  • Chu SH (2004) PM2.5 episodes as observed in the speciation trends network. Atmos Environt 38(31):5237–5246

    CAS  Google Scholar 

  • CPCB February (2010) Air quality monitoring, emission inventory and source apportionment study for Indian cities. Central Pollution Control Board. India

  • Cusack M, Perez N, Pey J, Alastuey A, Querol X (2013) Source apportionment of fine PM and sub-micron particle number concentrations at a reginal background site in the western Mediterranean: A 2.5 year study. Atmos Chem Phy 13:5173–5187

    Google Scholar 

  • Davidson CI, Phalen RF, Solomon PA (2005) Air borne particulate matter and human health: a review. Aero Sci Techn 39(8):737–749

    CAS  Google Scholar 

  • Draxler R R, Rolph G D (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring

  • Eldred RA, Cahill TA (1994) Trends in elemental concentrations of fine particles at remote sites in the United States of America. Atmos Environ 28(5):1009–1019

    CAS  Google Scholar 

  • EPA PMF User Guide (2008) EPA Positive matrix Factorization (PMF) 3.0 Fundamentals and User Guide, US-EP Office of Research and Development

  • García JH, Li WW, Cárdenas N, Arimoto R, Walton J, Trujillo D (2006) Determination of PM2.5 sources using time-resolved integrated source and receptor models. Chemosphere 65(11):2018–2027

    Google Scholar 

  • Gildemeister AE, Hopke PK, Kim E (2007) Sources of fine urban particulate matter in Detroit, MI. Chemosphere 69(7):1064–1074

    CAS  Google Scholar 

  • Goyal P, Sidhartha (2002) Effect of winds on SO2 and SPM concentarion in Delhi. Atmos Environ 36:2925–2930

  • Gugamsetty B, Wei H, Liu CN, Awasthi A, Hsu SC, Tsai CJ et al (2012) Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aero Air Qual Res 12:476–491

    CAS  Google Scholar 

  • Gupta AK, Karar K, Srivastava A (2007) Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. J Hazardous Materials 142(1):279–287

    CAS  Google Scholar 

  • Gupta I, Salunkhe A, Kumar R (2012) Source apportionment of PM10 by positive matrix factorization in urban area of Mumbai, India. The Science of World Journal doi:10.1100/2012/585791

    Google Scholar 

  • Habre R, Coull B, Koutrakis P (2011) Impact of source collinearity in simulated PM2.5 data on the PMF receptor model solution. Atmos Environ 45(38):6938–6946

    CAS  Google Scholar 

  • Harrison RM, Beddows DC, Dall’Osto M (2011) PMF analysis of wide-range particle size spectra collected on a major highway. Environ Science Tech 45(13):5522–5528

    CAS  Google Scholar 

  • Henry RC (2003) Multivariate receptor modeling by N-dimensional edge detection. Chemom Intell Lab Syst 65(2):179–189

    CAS  Google Scholar 

  • Henry RC, Hidy GM (1979) Multivariate analysis of particulate sulfate and other air quality variables by principal components—I. Annual data from Los Angeles and New York. Atmos Environ 13:1581–1596

    CAS  Google Scholar 

  • Heo JB, Hopke PK, Yi SM (2009) Source apportionment of PM2.5 in Seoul, Korea. Atmos Chem Phy 9(14):4957–4971

    CAS  Google Scholar 

  • Ho KF, Lee SC, Chow JC, Watson JG (2003) Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos Environ 37(8):1023–1032

    CAS  Google Scholar 

  • Hopke PK (2003) Recent developments in receptor modeling. J Chemometrics 17(5):255–265

    CAS  Google Scholar 

  • Hopke PK, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC, Liu H (2006) PM source apportionment and health effects: intercomparison of source apportionment results. J Exposure Sci Environ Epidemiol 16(3):275–286

    CAS  Google Scholar 

  • Hwang I, Hopke PK (2007) Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. Atmos Environ 41(3):506–518

    CAS  Google Scholar 

  • Ielpo P, Paolillo V, de Gennaro G, Dambruoso PR (2014) PM10 and gaseous pollutants trends from air quality monitoring networks in Bari province: principal component analysis and absolute principal component scores on a two years and half data set. Chemistry Central Journal 8(1):1

    Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis, contribution of Working Group I to the Fifth Assessment Report of the IPCC

  • Ito K, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, Thurston GD (2006) PM source apportionment and health effects: 2. An investigation of inter-method variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Exposure Sci Environ Epidemiol 16(4):300–310

    CAS  Google Scholar 

  • Jin X, Xiao C, Li J, Huang D, Yuan G, Yao Y, Wang P (2016) Source apportionment of PM2.5 in Beijing using positive matrix factorization. J Radioanalytical and Nuclear Chemistry 307(3):2147–2154

    CAS  Google Scholar 

  • Kang CM, Kang BW, Lee HS (2006) Source identification and trends in concentrations of gaseous and fine particulate principal species in Seoul, South Korea. J the Air & Waste Management Association 56(7):911–921

    CAS  Google Scholar 

  • Kar S, Maity JP, Samal AC, Santra SC (2010) Metallic components of traffic-induced urban aerosol, their spatial variation, and source apportionment. Environ Monit Asses 168(1–4):561–574

    CAS  Google Scholar 

  • Karanasiou AA, Siskos PA, Eleftheriadis K (2009) Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmos Environ 43:3385–3395

    CAS  Google Scholar 

  • Karar K, Gupta AK (2007) Source apportionment of PM10 at residential and industrial sites of an urban region of Kolkata, India. Atmos Res 84(1):30–41

    CAS  Google Scholar 

  • Khare P, Baruah BP (2010) Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of north-east India. Atmos Res 98(1):148–162

    CAS  Google Scholar 

  • Khillare PS, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environ Monit Asses 90(1–3):1–21

    CAS  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2003) Source identification of Atlanta aerosol by positive matrix factorization. J the Air & Waste Management Association 53(6):731–739

    CAS  Google Scholar 

  • Kong S, Ding X, Bai Z, Han B, Chen L, Shi J, Li Z (2010) A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. J Hazardous Materials 183(1):70–80

    CAS  Google Scholar 

  • Kong S, Ji Y, Lu B, Chen L, Han B, Li Z, Bai Z (2011) Characterization of PM10 source profiles for fugitive dust in Fushun—a city famous for coal. Atmos Environ 45(30):5351–5365

    CAS  Google Scholar 

  • Kothai P, Saradhi IV, Prathibha P, HopkeP K, Pandit GG, Puranik VD (2008) Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol Air Qual Res 8(4):423–436

    CAS  Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407(24):6196–6204

    CAS  Google Scholar 

  • Kumar AV, Patil RS, Nambi KSV (2001) Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmos Environ 35(25):4245–4251

    CAS  Google Scholar 

  • Lee JH, Hopke PK (2006) Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data. Atmos Environ 40:360–377

    Google Scholar 

  • Lee E, Chan CK, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33:3201–3212

    CAS  Google Scholar 

  • Lee JH, Yoshida Y, Turpin BJ, Hopke PK, Poirot RL, Lioy PJ, Oxley JC (2002) Identification of sources contributing to mid-Atlantic regional aerosol. J Air & Waste Management Association 52(10):1186–1205

    CAS  Google Scholar 

  • Li Z, Hopke PK, Husain L, Qureshi S, Dutkiewicz VA, Schwab JJ, Demerjian KL (2004) Sources of fine particle composition in New York city. Atmos Environ 38(38):6521–6529

    CAS  Google Scholar 

  • Li X, Wang Y, Guo X, Wang Y (2013) Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China. J Environ Sci 25:741–750

    CAS  Google Scholar 

  • Lough G C, Schauer JJ, Park JS, Shafer MM, DeMinter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836

    CAS  Google Scholar 

  • Malm WC, Sisler JF, Huffman D, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophyl Res:Atmos 99(D1):1347–1370

    CAS  Google Scholar 

  • Malm WC, Pitchford ML, McDade C, Ashbaugh LL (2007) Coarse particle speciation at selected locations in the rural continental United States. Atmos Environ 41(10):2225–2239

    CAS  Google Scholar 

  • Mandal P, Sarkar R, Mandal A, Saud T (2014) Seasonal variation and sources of aerosol pollution in Delhi, India. Environ Chem Letts 12(4):529–534

    CAS  Google Scholar 

  • Mauderly JL, Chow JC (2008) Health affects of organic aerosols. Inhal Toxicol 20(3):257–288

    CAS  Google Scholar 

  • Maykut NN, Lewtas J, Kim E, Larson TV (2003) Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington. Environ Sci Technol 37(22):5135–5142

    CAS  Google Scholar 

  • Mazzei F, Prati P (2009) Coarse particulate matter apportionment around a steel smelter plant. J Air & Waste Management Association 59(5):514–519

    CAS  Google Scholar 

  • Meng ZY, Lin WL, Jiang XM, Yan P, Wang Y, Zhang YM, Jia XF, Yu XL (2011) Characteristics of atmospheric ammonia over Beijing, China. Atmos Chem Phys 11:6139–6151

    CAS  Google Scholar 

  • Moreno T, Karanasiou A, Amato F, Lucarelli F, Nava S, Calzolai G, Chiari M, Coz E, Artíñano B, Lumbreras J, Borge R, Boldo E, Linares C, Alastuey A, Querol X, Gibbons W (2013) Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmos Environ 68:33–44

    CAS  Google Scholar 

  • Murillo JH, Ramos AC, Carcia FA, Jimenez SB, Cardenas B, Mizohata A (2012) Chemical composition of PM2.5 particles in Salamanca, Guanajuato Mexico: source apportionment with receptor models. Atmos Res 107:31–41

  • Mustaffa N, Latif M, Ali M, Khan M (2014) Source apportionment of surfactants in marine aerosols at different locations along the Malacca Straits. Environ Sci Pollut Res 21:6590–6602

    CAS  Google Scholar 

  • Naja M, Mallik C, Sarangi T, Sheel V, Lal S (2014) SO2 measurements at a high altitude site in the central Himalayas: role of regional transport. Atmos Environ 99:392–402

    CAS  Google Scholar 

  • Ogundele LT, Owoade OK, Olise FS, Hopke PK (2016) Source identification and apportionment of PM2.5 and PM2.5–10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environ Monit Asses 188(10):574

    Google Scholar 

  • Olson DA, Norris GA (2008) Chemical characterization of ambient particulate matter near the World Trade Center: source apportionment using organic and inorganic source markers. Atmos Environ 42(31):7310–7315

    CAS  Google Scholar 

  • Özkaynak H, Thurston GD (1987) Associations between 1980 US mortality rates and alternative measures of airborne particle concentration. Risk Anal 7(4):449–461

    Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37(1):23–35

    CAS  Google Scholar 

  • Paatero P (1999) The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J Comput Graph Stat 8(4):854–888

    Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126

    Google Scholar 

  • Panda S, Sharma SK, Mahapatra PS, Panda U, Rath S, Mahapatra M, Das T (2016) Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Nat Hazards 80(3):1709–1728

    Google Scholar 

  • Pandolfi M, Viana M, Minguillón MC, Querol X, Alastuey A, AmatoF ME (2008) Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: comparison of source apportionment results. Atmos Environ 42(40):9007–9017

    CAS  Google Scholar 

  • Pant P, Harrison RM (2012) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12

    CAS  Google Scholar 

  • Phuleria HC, Sheesley RJ, Schauer JJ, Fine PM, Sioutas C (2007) Roadside measurements of size-segregated particulate organic compounds near gasoline and diesel-dominated freeways in Los Angeles, CA. Atmos Environ 41(22):4653–4671

    CAS  Google Scholar 

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air & Waste Management Association 56(6):709–742

    CAS  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141

    CAS  Google Scholar 

  • Ram K, Sarin MM (2011) Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmos Environ 45(2):460–468

    CAS  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2010) One-year record of carbonaceous aerosols from an urban location (Kanpur) in the Indo-Gangetic Plain: characterization, sources and temporal variability. J Geophys Res doi:10.1029/2010JD014188

  • Ram K, Sarin MM, Sudheer AK, Rengarajan R (2012) Carbonaceous and secondary inorganic aerosols during wintertime fog and haze over urban sites in the Indo-Gangetic Plain. Aerosol Air Qual Res 12:359–370

    CAS  Google Scholar 

  • Reddy MS, Venkataraman C (2000) Atmospheric optical and radiative effects of anthropogenic aerosol constituents from India. Atmos Environ 34(26):4511–4523

    CAS  Google Scholar 

  • Rodrıguez S, Querol X, Alastuey A, Viana MM, Alarcon M, Mantilla E, Ruiz CR (2004) Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in eastern Spain. Sci Total Environ 328(1):95–113

    Google Scholar 

  • Russell AG, Brunekreef B (2009) A focus on particulate matter and health. Environ Sci Technol 43(13):4620–4625

    CAS  Google Scholar 

  • Salma I, Chi X, Maenhaut W (2004) Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmos Environ 38(1):27–36

    CAS  Google Scholar 

  • Santoso M, Lestiani DD, Markwitz A (2013) Characterization of airborne particulate matter collected at Jakarta roadside of an arterial road. J Radioanal Nucl Chem 297:165–169

    CAS  Google Scholar 

  • Saxena M, Sharma A, Sen A, Saxena P, Saraswati, Mandal TK, Sharma SK (2017) Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: seasonal variability and sources. Atmos Res 184:112–125

    CAS  Google Scholar 

  • Schwartz J, Dockery DW (1992) Increased mortality in Philadelphia associated with daily air pollution concentrations. Am Rev Respir Dis 145(3):600–604

    CAS  Google Scholar 

  • Seinfeld J H, Pandis S N (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons

  • Seneviratne M, Waduge VA, Hadagiripathira L, Sanjeewani S, Attanayake T, Jayaratne N, Hopke PK (2011) Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. Atmos Pollut Res 2:207–212

    CAS  Google Scholar 

  • Sharma DN, Sawant AA, Uma R, Cocker DR (2003) Preliminary chemical characterization of particle-phase organic compounds in New Delhi, India. Atmos Environ 37(30):4317–4323

    CAS  Google Scholar 

  • Sharma M, Kishore S, Tripathi SN, Behera SN (2007) Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. J Atmos Chem 58(1):1–17

    CAS  Google Scholar 

  • Sharma SK, Singh AK, Saud T, Mandal TK, Saxena M, Singh S, Raha S (2012a) Study on water-soluble ionic composition of PM10 and related trace gases over Bay of Bengal during W_ICARB campaign. Meteorol Atmos Phy 118(1–2):37–51

    Google Scholar 

  • Sharma SK, Saxena M, Saud T, Korpole S, Mandal TK (2012b) Measurement of NH3, NO, NO2 and related particulates at urban sites of Indo-Gangetic Plain (IGP) of India. J Sci Indust Res 71(5):360–362

    CAS  Google Scholar 

  • Sharma SK, Kumar M, Gupta NC, Saxena M, Mandal TK (2014a) Characteristics of ambient ammonia over Delhi, India. Meteorol Atmos Phy 124(1–2):67–82

    Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, Sharma A, Datta A, Saud T (2014b) Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India. J Atmos Solar-Terres Phy 113:10–22

    CAS  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M, Sharma A, Gautam R (2014c) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Climate 10:656–670

    Google Scholar 

  • Sharma SK, Sharma A, Saxena M, Choudhary N, Masiwal R, Mandal TK, Sharma C (2015) Chemical characterization and source apportionment of aerosol at an urban area of central Delhi, India. Atmos Poll Res 7(1):110–121

    Google Scholar 

  • Sharma SK, Mandal TK, Srivastava MK, Chatterjee A, Jain S, Saxena M, Ghosh SK (2016a) Spatio-temporal variation in chemical characteristics of PM10 over Indo-Gangetic Plain of India. Environ Sci Poll Res 23(18):18809–18822

    CAS  Google Scholar 

  • Sharma SK, Mandal TK, Jain S, Saraswati SA, Saxena M (2016b) Source apportionment of PM2.5 in Delhi, India using PMF model. Bull Environ Contamin Toxicol 97(2):286–293

    CAS  Google Scholar 

  • Shen G, Wang W, Yang Y, Zhu C, Min Y, Xue M, Wang R (2010) Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural northern China. Atmos Environ 44(39):5237–5243

    CAS  Google Scholar 

  • Shi GL, Liu GR, Peng X, Wang YN, Tian YZ, Wang W, Feng YC (2014) A comparison of multiple combined models for source apportionment, including the PCA/MLR-CMB, UNMIX-CMB and PMF-CMB models. Aero Air Qual Res 14(7):2040–2050

    Google Scholar 

  • Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazardous Materials 175(1):600–607

    CAS  Google Scholar 

  • Singh DP, Gadi R, Mandal TK (2011) Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmos Environ 45(40):7653–7663

    CAS  Google Scholar 

  • Song Y, Xie S, Zhang Y, Zeng L, Salmon LG, Zheng M (2006) Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci Total Environ 372(1):278–286

    CAS  Google Scholar 

  • Srimuruganandam B, Nagendra SS (2012a) Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside. Sci Total Environ 433:8–19

    CAS  Google Scholar 

  • Srimuruganandam B, Nagendra SS (2012b) Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere 88(1):120–130

    CAS  Google Scholar 

  • Srivastava A, Jain VK (2007) Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model. J Hazard Mater 144(1):283–291

    CAS  Google Scholar 

  • Statistical Abstract of Delhi 2014 Directorate of Economics and Statistics. Govt. of National Capital Delhi. www.delhi.gov.in

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ (1967) 19(1):9–25

    CAS  Google Scholar 

  • Tie X, Wu D, Brasseur G (2009) Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos Environ 43(14):2375–2377

    CAS  Google Scholar 

  • Tiwari S, Bisht DS, Srivastava AK, Pipal AS, Taneja A, Srivastava MK, Attri SD (2014) Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India. Atmos Res 145:45–56

    Google Scholar 

  • Trivedi DK, Ali K, Beig G (2014) Impact of meteorological parameters on the development of fine and coarse particles over Delhi. Sci Total Environ 478:175–183

    CAS  Google Scholar 

  • Turpin BJ, Huntzicker JJ (1991) Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations. Atmos Environ Part A General Topics 25(2):207–215

    Google Scholar 

  • Ulbrich IM, Canagaratna MR, Zhang Q, Worsnop DR, Jimenez JL (2009) Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys 9(9):2891–2918

    CAS  Google Scholar 

  • USEPA (2008) EPA positive matrix factorization (PMF) 3.0 fundamentals & user guide. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vallius M, Janssen NAH, Heinrich J, Hoek G, Ruuskanen J, Cyrys J, Pekkanen J (2005) Sources and elemental composition of ambient PM2.5 in three European cities. Sci Total Environ 337(1):147–162

    CAS  Google Scholar 

  • Van Donkelaar A, Martin R V, Brauer M, Boys B L (2015) Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter (Doctoral dissertation, University of British Columbia).

  • Vernile P, Tutino M, Bari G, Amodio M, Spagnuolo M, de Gennaro G, de Lillo E (2013) Particulate matter toxicity evaluation using bioindicators and comet assay. Aerosol Air Qual Res 13(1):172–178

    CAS  Google Scholar 

  • Viana M, Pandolfi M, Minguillón MC, Querol X, Alastuey A, Monfort E, Celades I (2008) Inter-comparison of receptor models for PM source apportionment: case study in an industrial area. Atmos Environ 42(16):3820–3832

    CAS  Google Scholar 

  • Waked A, Favez O, Alleman LY, Piot C, Petit JE, Delaunay T, Verlinden E, Golly B, Besombes JL, Jaffrezo JL, Leoz-Garziandia E (2014) Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos Chem Phys 14:3325–3346

    Google Scholar 

  • Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24(8):938–939

    Google Scholar 

  • Wang ZS, Wu T, Shi GL, Fu X, Tian YZ, FengY C, Zhang WJ (2012) Potential source analysis for PM10 and PM2.5 in autumn in a northern city in China. Atmos Environ 43(14):2375–2377

    Google Scholar 

  • Wang L, Liu Z, Sun Y, Ji D, Wang Y (2015) Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmos Res 157:37–48

    CAS  Google Scholar 

  • Watson JG, Chow JC (2002) A wintertime PM2.5 episode at the Fresno, CA, supersite. Atmos Environ 36(3):465–475

    CAS  Google Scholar 

  • Watson J G, Chow J C (2005) Receptor models. Air Quality Modeling–Theories, Methodologies, Computational Techniques, and Available Databases and Software 2: 455–501

  • Wilson W E, Suh H H (1995) Differentiating fine and coarse particles: definitions and exposure relationships relevant to epidemiological studies. In: Trends in Aerosol Research IV: New Approaches in Aerosol Science and Technology, Proceedings of the Seminar. Gerhard Mercator University, Duisburg, Germany 57–71

  • Wolff GT, Korsog PE, Stroup DP, Ruthkosky MS, Morrissey ML (1985) The influence of local and regional sources on the concentration of inhalable particulate matter in southeastern Michigan. Atmos Environ 19(2):305–313

    CAS  Google Scholar 

  • World Health Organization (2009) Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization

  • World Health Organization (2015) World Health Statistics. World Health Organization

  • World Health Organization (2016) WHO Global Urban Ambient Air Pollution Database. World Health Organization

  • Yan B, Zheng M, Hu Y, Ding X, Sullivan AP, Weber RJ, Russell AG (2009) Roadside, urban, and rural comparison of primary and secondary organic molecular markers in ambient PM2.5. Environ Sci Technol 43(12):4287–4293

    CAS  Google Scholar 

  • Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44(6):841–851

    CAS  Google Scholar 

  • Zhang XY, Cao JJ, Li LM, Arimoto R, Cheng Y, Huebert B, Wang D (2002) Characterization of atmospheric aerosol over XiAn in the south margin of the Loess Plateau, China. Atmos Environ 36(26):4189–4199

    CAS  Google Scholar 

  • Zhang QH, Zhang JP, Xue HW (2010) The challenge of improving visibility in Beijing. Atmos Chem Phy 10(16):7821–7827

    CAS  Google Scholar 

  • Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J et al (2013) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phy 13(14):7053–7074

    Google Scholar 

  • Zheng M, Salmon LG, Schauer JJ, Zeng L, Kiang CS, Zhang Y, Cass GR (2005) Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos Environ 39(22):3967–3976

    CAS  Google Scholar 

  • Zheng M, Cass GR, Ke L, Wang F, Schauer JJ, Edgerton ES, Russell AG (2007) Source apportionment of daily fine particulate matter at Jefferson Street, Atlanta, GA, during summer and winter. J Air & Waste Management Association 57(2):228–242

    Google Scholar 

  • Zheng J, Che W, Zheng Z, Chen L, Zhong L (2013) Analysis of spatial and temporal variability of PM10 concentrations using MODIS aerosol optical thickness in the Pearl River Delta region, China. Aerosol Air Qual Res 13(3):862–876

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director, CSIR-NPL, New Delhi, and Head, Environmental Sciences and Biomedical Metrology Division, for their support and encouragement. Authors are also thankful to the Council of Scientific and Industrial Research, New Delhi, for providing the partial financial support for this study (PSC-0112 Network Project). One of the authors, Srishti Jain, thankfully acknowledge Department of Science and Technology (DST), New Delhi, for awarding the INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar Sharma.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

.

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Sharma, S.K., Choudhary, N. et al. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ Sci Pollut Res 24, 14637–14656 (2017). https://doi.org/10.1007/s11356-017-8925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8925-5

Keywords

Navigation