Skip to main content

Advertisement

Log in

Biosorption of chromium (VI) from aqueous solutions and ANN modelling

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The use of sustainable, green and biodegradable natural wastes for Cr(VI) detoxification from the contaminated wastewater is considered as a challenging issue. The present research is aimed to assess the effectiveness of seven different natural biomaterials, such as jackfruit leaf, mango leaf, onion peel, garlic peel, bamboo leaf, acid treated rubber leaf and coconut shell powder, for Cr(VI) eradication from aqueous solution by biosorption process. Characterizations were conducted using SEM, BET and FTIR spectroscopy. The effects of operating parameters, viz., pH, initial Cr(VI) ion concentration, adsorbent dosages, contact time and temperature on metal removal efficiency, were studied. The biosorption mechanism was described by the pseudo-second-order model and Langmuir isotherm model. The biosorption process was exothermic, spontaneous and chemical (except garlic peel) in nature. The sequence of adsorption capacity was mango leaf > jackfruit leaf > acid treated rubber leaf > onion peel > bamboo leaf > garlic peel > coconut shell with maximum Langmuir adsorption capacity of 35.7 mg g−1 for mango leaf. The treated effluent can be reused. Desorption study suggested effective reuse of the adsorbents up to three cycles, and safe disposal method of the used adsorbents suggested biodegradability and sustainability of the process by reapplication of the spent adsorbent and ultimately leading towards zero wastages. The performances of the adsorbents were verified with wastewater from electroplating industry. The scale-up study reported for industrial applications. ANN modelling using multilayer perception with gradient descent (GD) and Levenberg-Marquart (LM) algorithm had been successfully used for prediction of Cr(VI) removal efficiency. The study explores the undiscovered potential of the natural waste materials for sustainable existence of small and medium sector industries, especially in the third world countries by protecting the environment by eco-innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acer FN, Malkoc E (2004) The removal of chromium (VI) from aqueous solution by fagus orientals L. Bioresour Technol 94:13–15

    Article  Google Scholar 

  • Ahmed MT, Taha S, Chaabane T, Akretche D, Maachi R, Dorange D (2006) Nanofiltration process applied to the tannery solutions. Desalination 200(1–3):419–420

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF (1998) Standard methods for examination of water and wastewater, 20th edn. Washington D.C., New York

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Bar N, Das SK (2011) Comparative study of friction factor by prediction of frictional pressure drop per unit length using empirical correlation and ANN for gas-non-Newtonian liquid flow through 180° circular bend. Int Review Chem Eng 3(6):628–643

  • Bar N, Das SK (2013) Frictional pressure drop for gas-non-Newtonian liquid flow through 90° and 135° circular bend: prediction using empirical correlation and ANN. Int J Fluid Mech Res 39(5):416–437

  • Bar, N., Das, S.K., 2016. Applicability of ANN in adsorptive removal of Cd(II) from aqueous solution. In: J. K Mandal, S. Mukhopadhyay, T. Pal (Eds), Handbook of research on natural computing for optimization, , Vol. II, pp 554–592, IGI Global book series Advances in Computational Intelligence and Robotics (ACIR) (ISSN: 2327-0411; eISSN: 2327-042X), IGI Global, USA.

  • Bar N, Bandyopadhyay TK, Das SK, Biswas MN (2010a) Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components. J Pet Sci Eng 71(3):187–194

    Article  CAS  Google Scholar 

  • Bar N, Das SK, Biswas MN (2010b) Prediction of pressure drop using artificial neural network for gas non-Newtonian liquid flow through piping components. Ind Eng Chem Res 49(19):9423–9429

    Article  CAS  Google Scholar 

  • Bhattacharya AK, Naiya TK, Mandal SN, Das SK (2008) Adsorption kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137(3):529–541

  • Cieslak-Golonka M (1995) Toxic and mutagenic effects of chromium (VI) A review. Polyhedron 15(21):3667–3689

  • Cimino G, Passerini A, Toscano G (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34(11):2955–2962

    Article  CAS  Google Scholar 

  • Dakiky M, Khamis M, Manassra A, Mereb M (2002) Selective adsorption of chromium (IV) in industrial waste water using low cost abundantly available adsorbents. Adv Environ Res 6(4):533–540

    Article  CAS  Google Scholar 

  • Das B, Mondal NK, Roy P, Chattaraj S (2013) Equilibrium, kinetic and thermodynamic study on chromium (VI) removal from aqueous solution using Pistia stratiotes biomass. Chem Sci Trans 2:85–104

    Article  Google Scholar 

  • Das B, Ganguly UP, Bar N, Das SK (2015) Holdup prediction in inverse fluidization using non-Newtonian pseudoplastic liquids: empirical correlation and ANN modeling. Powder Technol 273(C):83–90

    Article  CAS  Google Scholar 

  • Dinçer AR, Güneş Y, Karakaya N, Güneş E (2007) Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresour Technol 98(4):834–939

    Article  Google Scholar 

  • Dönmez D, Aksu Z (2002) Removal of chromium (VI) from saline wastewater by dunaliella species. Process Biochem 38(5):751–762

    Article  Google Scholar 

  • Dubey SP, Gopal G (2007) Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste materials: a comparative study. J Hazad Mater 145:465–470

    Article  CAS  Google Scholar 

  • Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Review 60:235–266

  • Dubinin MM, Zaverina ED, Radushkevich LV (1947) Sorption and structure of active carbons I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii 21:1351–1362

    CAS  Google Scholar 

  • Dupont L, Guillon E (2003) Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ Sci Technol 37(18):4235–4241

  • Freundlich HMF (1906) Über die adsorption in losungen. Z Phys Chem 57(A):385–470

    CAS  Google Scholar 

  • Gordon C (1994) The use of cross-validation in neural network extrapolation of forest tree growth. Proceedings of the Pattern Recognition Association of South Africa, pp 1–12

  • Gupta VK, Pathania D, Agarwal S, Sharma S (2013) Removal of Cr(VI) onto Ficus carica biosorbent from water. Environ Sci Poll Res 20:2632–2644

    Article  CAS  Google Scholar 

  • Gupta A, Majumder CB (2014) Adsorptive removal of chromium (VI) from aqueous solutions by using sugar and distillery waste material. Int J Sci Engg Technol 3:507–513

    Google Scholar 

  • Giwa AA, Bello IA, Oladipo MA, Adeoye DO (2013) Removal of cadmium from waste-water by adsorption using the husk of melon (Citrullus lanatus) seed. Int J Basic Applied Sci 2(1):110–123

  • Gunay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146:362–371

    Article  Google Scholar 

  • Hasan SH, Singh KK, Prakash O, Talat M, Ho YS (2008) Removal of Cr(VI) from aqueous solutions using agricultural waste ‘maize bran’. J Hazard Mater 152(1):356–365

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G, Wase DAJ, Foster CF (2000) Study of the sorption of divalent metal on peat. Adsorp Sci Technol 20(8):797–815

    Article  Google Scholar 

  • Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper(II) on to peat. Adsorption Sci & Technol 20(8):797–815

  • Indian Standard (1991) Drinking water-specification (first revision), IS 10500

  • Kondapalli S, Mohanty K (2009) Biosorption of hexavalent chromium from aqueous solutions by catla scales: equilibrium and kinetics studies. Chem Eng J 155(3):666–673

    Article  Google Scholar 

  • Kondapalli S, Mohanty K (2011) Influence of temperature on equilibrium, kinetic and thermodynamic parameters of biosorption of Cr(VI) onto fish scales as suitable biosorbent. J Water Resour Prot 3(6):429–439

  • Krishna D, Sree R (2013) Response surface modeling and optimization of chromium (VI) removal from waste water using custard apple peel powder. Walailak J Sci Technol 11:489–496

    Google Scholar 

  • Kundu S, Gupta AK (2006) Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chem Eng J 122:93–106

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffle. Kungliga Sevenska Vetenskapasakademiens, Handilingar 24(4):1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1368

    Article  CAS  Google Scholar 

  • Lopez-Nuñez PV, Aranda-García E, Cristiani-Urbina MC, Morales-Barrera L, Cristiani-Urbina E (2014) Removal of hexavalent and total chromium from aqueous solutions by plum (P. domestica L.) tree bark. Environ Eng Manag J 13(8):1927–1938

    Google Scholar 

  • Malkoc E, Nuhoglu Y, Dundar M (2006) Adsorption of chromium(VI) on pomace—an olive oil industry waste: batch and column studies. J Hazard Mater 138(1):142–151

    Article  CAS  Google Scholar 

  • Mauri R, Shinnar R, DʼAmore M, Giordano P, Volpe A (2001) Solvent extraction of chromium and cadmium from contaminated soils. AICHE J 47(2):509–512

    Article  CAS  Google Scholar 

  • Mitra T, Singha B, Bar N, Das SK (2014) Removal of Pb(II) ions from aqueous solution using water hyacinth root by fixed-bed column and ANN modeling. J Hazard Mater 273:94–103

    Article  CAS  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70(6):1128–1134

    Article  CAS  Google Scholar 

  • Nag S, Mondal A, Mishra U, Bar N, Das SK (2016) Removal of chromium(VI) from aqueous solutions using rubber leaf powder: batch, column studies and ANN modeling. Desalin Water Treat 57(36):16927–16942

    CAS  Google Scholar 

  • Namasivayam C, Yamuna RT (1995) Adsorption of chromium (VI) by a low-cost adsorbent: biogas residual slurry. Chemosphere 30(3):561–578

    Article  CAS  Google Scholar 

  • Netzahuatl-Munoz AR, Aranda-García E, Cristiani-Urbina MC, Barragán-Huerta BE, Villegas-Garrido TL, Cristiani-Urbina E (2010) Removal of hexavalent and total chromium from aqueous solutions by Schinus molle bark. Fresenius Environ Bull 19(12):2911–2918

    CAS  Google Scholar 

  • Netzahuati-Munoz AR, Guillién-Jiménez FM, Chávez-Gómez B, Villegas-Garrido TL, Cristiani-Urbina E (2012a) Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water Air Soil Pollut 223(2):625–641

    Article  Google Scholar 

  • Netzahuati-Munoz AR, Morales-Barrea LM, Cristiani-Urbina MC, Cristiani-Urbina E (2012b) Hexavalent chromium reduction and chromium biosorption by Prunus serotina bark. Fresenius Environ Bull 21(7):1793–1801

    Google Scholar 

  • Netzahuatitiani-Munoz AR, Cristiani-Urbina MC, Cristiani-Urbina E (2015) Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One 10(9):e0137086. doi:10.1371/journal.pone.0137086

    Article  Google Scholar 

  • Qaiser S, Saleemi AR, Umar M (2009) Biosorption of lead(II) and chromium(VI) on groundnut hull: equilibrium, kinetics and thermodynamics study. Electronic J Biotech 12:3–4

    Google Scholar 

  • Orhan Y, Büyügüngör H (1993) The removal of heavy metals by using agricultural wastes. Water Sci Technol 28:247–257

    CAS  Google Scholar 

  • Özer A, Altundoğan HS, Erdem M, Tümen F (1997) A study on the Cr(VI) removal from aqueous solutions by steel wool. Environ Pollut 97(1–2):107–112

    Article  Google Scholar 

  • Padilla AP, Tavani EL (1999) Treatment of industrial effluent by reverse osmosis. Desalination 126(1–3):219–226

    Article  CAS  Google Scholar 

  • Patterson JW (1985) Industrial wastewater treatment technology, 2nd edn. Butterworth Publishers, Stoneham, MA, USA

  • Pehlivan E, Altun TR (2008) Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J Hazard Mater 155:378–384

    Article  CAS  Google Scholar 

  • Polanyi M (1932) Section III—theories of the adsorption of gases. A general survey and some additional remarks. Trans Faraday Soc 28:316–333

  • Rengaraj S, Joo CK, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J Hazard Mater 102(2–3):257–275

    Article  CAS  Google Scholar 

  • Sarode DB, Jadhav RN, Khatik VA, Ingle ST, Attarde SB (2010) Extraction and leaching of heavy metals from thermal power plant fly ash and its admixtures. Pol J Environ Stud 19(6):1325–1330

    CAS  Google Scholar 

  • Şen A, Pereira H, Olivella MA, Villaescusa I (2015) Heavy metals removal in aqueous environments using bark as a biosorbent. Int J Environ Sci Technol 12(1):391–404

    Article  Google Scholar 

  • Sharma DC, Forster CF (1994) A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresor Technol 47:257–264

    Article  CAS  Google Scholar 

  • Singha B, Das SK (2011) Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surf B: Biointerfaces 84(1):221–232

    Article  CAS  Google Scholar 

  • Singha B, Naiya TK, Bhattacharya AK, Das SK (2011) Cr(VI) ions removal from aqueous solutions using natural adsorbents—FTIR studies. J Environ Prot 2(6):729–735

    Article  CAS  Google Scholar 

  • Singha B, Das SK (2013) Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf B: Biointerfaces 107:97–106

    Article  CAS  Google Scholar 

  • Singh B, Bar N, Das SK (2014) The use of artificial neural networks (ANN) for modeling of adsorption of Cr(VI) ions. Desalin Water Treat 52(2014):415–425

    Article  Google Scholar 

  • Singha B, Bar N, Das SK (2015) The use of artificial neural networks (ANN) for modeling of Pb(II) adsorption in batch process. J Mol  Liquids 211:228–332

  • Singh B, Bar N, Das SK (2014) The use of artificial neural networks (ANN) for modeling of adsorption of Cr(VI) ions. Desalin Water Treat 52(2014):415–425

    Article  Google Scholar 

  • Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochim USSR 12:327–356

    CAS  Google Scholar 

  • Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. Wiley Interscience, New York, USA

  • US Department of Health and Human Services (1991) Toxicological profile for chromium. Public Health Services Agency for the Toxic Substances and Diseases Registry, Washington

    Google Scholar 

  • Venkateswarlu P, Ratnam MV, Rao DS, Rao MV (2007) Removal of chromium from an aqueous solution using Azadirachta indica (neem) leaf powder as an adsorbent. Int J Physical Sci 2:188–195

    Google Scholar 

  • Wang XS, Chen LF, Li FY, Chen KL, Wan WY, Tang YJ (2010) Removal of Cr(VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance. J Hazard Mater 175:816–822

    Article  CAS  Google Scholar 

  • Weber WJ, Moris JC (1963) Kinetics of adsorption on carbon from solution. J San Eng Div 89(2):31–60

  • Wu YJ, Zhang LJ, Gao CL, Ma JY, Ma XH, Han RP (2009) Adsorption of copper ions and methylene blue in a single and binary system on wheat straw. J Chem Eng Data 54(12):3229–3234

    Article  CAS  Google Scholar 

  • Yang Y (2007) Consistency of cross validation for comparing regression procedures. Ann Stat 35(6):2450–2473

    Article  Google Scholar 

  • Zou W, Zhao L (2012) Removal of uranium(VI) from aqueous solution using citric acid modified pine saw dust: batch and column studies. J Radioanal Nucl Chem 292(2):585–595

    Article  CAS  Google Scholar 

Web sites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kumar Das.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(DOC 911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, S., Mondal, A., Bar, N. et al. Biosorption of chromium (VI) from aqueous solutions and ANN modelling. Environ Sci Pollut Res 24, 18817–18835 (2017). https://doi.org/10.1007/s11356-017-9325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9325-6

Keywords

Navigation