Skip to main content

Advertisement

Log in

Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

It is very important to control methane emissions to mitigate global warming. An intermittent micro-aeration control system was used to control methane emissions from an integrated vertical-flow constructed wetland (IVCW) to treat agricultural domestic wastewater pollution in this study. The optimized intermittent micro-aeration conditions were a 20-min aeration time and 340-min non-aeration time, 3.9 m3 h−1 aeration intensity, evenly distributed micro-aeration diffusers at the tank bottom, and an aeration period of every 6 h. Methane flux emission by intermittent micro-aeration was decreased by 60.7% under the optimized conditions. The average oxygen transfer efficiency was 26.73%. The control of CH4 emission from IVCWs was most strongly influenced by the intermittent micro-aeration diffuser distribution, followed by aeration intensity, aeration time, and water depth. Scaling up of IVCWs is feasible in rural areas by using intermittent micro-aeration control as a mitigation measure for methane gas emissions for climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed T, Semmens MJ, Voss MA (2004) Oxygen transfer characteristics of hollow-fiber, composite membranes. Adv Environ Res 8(3–4):637–646

    Article  CAS  Google Scholar 

  • ASCE (1997) Standard guidelines for in-process oxygen transfer testing. ASCE (American Society of Civil Engineering), New York

    Book  Google Scholar 

  • ASCE (2006) ASCE Standard Measurement of Oxygen Transfer in Clean Water. ASCE (American Society of Civil Engineering), New York

    Google Scholar 

  • Bilgin M, Im Ek S, Tulun E (2014) Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetlands by using Cyperus alternifolius. Ecol Eng 70:362–365

    Article  Google Scholar 

  • Button M, Nivala J, Weber KP, Aubron T, Müller RA (2015) Microbial community metabolic function in subsurface flow constructed wetlands of different designs. Ecol Eng 80:162–171

    Article  Google Scholar 

  • Cattani M, Maccarana L, Rossi G, Tagliapietra F, Schiavon S, Bailoni L (2016) Dose-response and inclusion effects of pure natural extracts and synthetic compounds on in vitro methane production. Anim Feed Sci Technol 218:100–109

    Article  CAS  Google Scholar 

  • Chiemchaisri C, Chiemchaisri W, Junsod J, Threedeach S, Wicranarachchi PN (2009) Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland. Bioresour Technol 100(16):3808–3814

    Article  CAS  Google Scholar 

  • Chowdhury T, Dick R (2013) Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl Soil Ecol 65:8–22

    Article  Google Scholar 

  • Cui L, Ouyang Y, Chen Y, Zhu X, Zhu W (2009) Removal of total nitrogen by Cyperus alternifolius from wastewaters in simulated vertical-flow constructed wetlands. Ecol Eng 35(8):1271–1274

    Article  Google Scholar 

  • de la Varga D, Ruiz I, Álvarez JA, Soto M (2015) Methane and carbon dioxide emissions from constructed wetlands receiving anaerobically pretreated sewage. Sci Total Environ 538:824–833

    Article  CAS  Google Scholar 

  • Dixon A, Simon M, Burkitt T (2003) Assessing the environmental impact of two options for small-scale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol Eng 20(4):297–308

    Article  Google Scholar 

  • Fan J, Wang W, Zhang B, Guo Y, Ngo HH, Guo W, Zhang J, Wu H (2013a) Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios. Bioresour Technol 143:461–466

    Article  CAS  Google Scholar 

  • Fan J, Zhang B, Zhang J, Ngo HH, Guo W, Liu F, Guo Y, Wu H (2013b) Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. Bioresour Technol 141:117–122

    Article  CAS  Google Scholar 

  • Fan J, Zhang J, Guo W, Liang S, Wu H (2016) Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands. Bioresour Technol 214(Supplement C):871–875

    Article  CAS  Google Scholar 

  • Feng Z, Li X, Lu C, Shen Z, Xu F, Chen Y (2012) Characterization of Pseudomonas mendocina LR capable of removing nitrogen from various nitrogen-contaminated water samples when cultivated with Cyperus alternifolius L. J Biosci Bioeng 114(2):182–187

    Article  CAS  Google Scholar 

  • Foladori P, Ruaben J, Ortigara ARC (2013) Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater. Bioresour Technol 149(Supplement C):398–405

    Article  CAS  Google Scholar 

  • Fuchs VJ (2009) Nitrogen Removal and Sustainability in Vertical Flow Constructed Wetlands for Small Scale Wastewater Treatment. Michigan Technological University, Houghton

    Google Scholar 

  • Fuchs VJ, Mihelcic JR, Gierke JS (2011) Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions. Water Res 45(5):2073–2081

    Article  CAS  Google Scholar 

  • Garnet KN, Megonigal JP, Litchfield C, Taylor GE Jr (2005) Physiological control of leaf methane emission from wetland plants. Aquat Bot 81(2):141–155

    Article  CAS  Google Scholar 

  • Grünfeld S, Brix H (1999) Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis. Aquat Bot 64(1):63–75

    Article  Google Scholar 

  • Hirasawa JS, Sarti A, Del AN, Varesche MB (2008) Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor. Anaerobe 14(4):209–218

    Article  CAS  Google Scholar 

  • Hospido A, Moreira MT, Fernández-Couto M, Feijoo G (2004) Environmental performance of a municipal wastewater treatment plant. Int J Life Cycle Assess 9(4):261–271

    Article  Google Scholar 

  • Hu Y, He F, Ma L, Zhang Y, Wu Z (2016) Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems. Bioresour Technol 207(Supplement C):339–345

    CAS  Google Scholar 

  • IPCC (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT et al (eds) Climate Change: The Scientific Basis. Cambridge University Press, Cambridge, pp 239–287 (Chapter 4)

    Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York 1535 pp

  • IPCC (2014) 2013 supplement to the IPCC guidelines for National Greenhouse gas Inverntories: wetlands. IPCC, Switzerland

    Google Scholar 

  • Jia W, Zhang J, Wu J, Xie H, Zhang B (2010) Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: a microcosm experiment. Desalination 262(1):202–208

    Article  CAS  Google Scholar 

  • Johansson AE, Gustavsson AM, Oquist MG, Svensson BH (2004) Methane emissions from a constructed wetland treating wastewater-seasonal and spatial distribution and dependence on edaphic factors. Water Res 38:3960–3970

    Article  CAS  Google Scholar 

  • Juottonen H, Galand PE, Tuittila ES, Laine J, Fritze H, Yrjala K (2005) Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7(10):1547–1557

    Article  CAS  Google Scholar 

  • Kadlec RH, Wallace SD (2008) Treatmetn wetlands, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073):187–191

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytologist 178(4):808–814

  • Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic Bacteria. Syst Appl Microbiol 4(3):305–312

    Article  CAS  Google Scholar 

  • Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S (2015) Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agric For Meteorol 204:94–105

    Article  Google Scholar 

  • Koelbener A, Ström L, Edwards PJ, Olde Venterink H (2010) Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant Soil 326(1):147–158

    Article  CAS  Google Scholar 

  • Krasnits E, Friedler E, Sabbah I, Beliavski M, Tarre S, Green M (2009) Spatial distribution of major microbial groups in a well established constructed wetland treating municipal wastewater. Ecol Eng 35(7):1085–1089

    Article  Google Scholar 

  • Kumar M, Singh R (2017) Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment. Bioresour Technol 232:321–330

    Article  CAS  Google Scholar 

  • Lange M, Ahring BK (2001) A comprehensive study into the molecular methodology and molecular biology of methanogenic archaea. FEMS Microbiol Rev 25(5):553–571

    Article  CAS  Google Scholar 

  • Leu S, Libra JA, Stenstrom MK (2010) Monitoring off-gas O2/CO2 to predict nitrification performance in activated sludge processes. Water Res 44(11):3434–3444

    Article  CAS  Google Scholar 

  • Lewis WK, Whitman WG (1924) Principles of gas absorption. Ind Eng Chem 16(12):1215–1220

    Article  CAS  Google Scholar 

  • Li J, Zhu L, Xu Y, Zhu B (2010) Oxygen transfer characteristics of hydrophilic treated polypropylene hollow fiber membranes for bubbleless aeration. J Membr Sci 362(1–2):47–57

    Article  CAS  Google Scholar 

  • Li F, Lu L, Zheng X, Ngo HH, Liang S, Guo W, Zhang X (2014) Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding. Bioresour Technol 169(Supplement C):395–402

    Article  CAS  Google Scholar 

  • Liikanen A, Huttunen JT, Karjalainen SM, Heikkinen K, V Is Nen TS, Nyk Nen H, Martikainen PJ (2006) Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecol Eng 26(3):241–251

    Article  Google Scholar 

  • Liu T, Cao J (2007) Study on the isolation and growth condition of methanogen (in Chinese). Journal of Heilongjiang Hydraulic Engineering College (04):120–122

  • Liu G, Ma L, Xing Z, College of Chemistry Engineering In Qingdao, China Training Center of Nomographic Chart (2002) Handbook of nomographic chart for physical property in chemistry engineering (in Chinese). China Chemistry Industry Press, Beijing, pp 245–286

  • Liu D, Wu X, Chang J, Gu B, Min Y, Ge Y, Shi Y, Xue H, Peng C, Wu J (2012) Constructed wetlands as biofuel production systems. Nat Clim Chang 2(3):190–194

    Article  CAS  Google Scholar 

  • Liu L, Zhao X, Zhao N, Shen Z, Wang M, Guo Y, Xu Y (2013) Effect of aeration modes and influent COD/N ratios on the nitrogen removal performance of vertical flow constructed wetland. Ecol Eng 57(Supplement C):10–16

    Article  Google Scholar 

  • López D, Fuenzalida D, Vera I, Rojas K, Vidal G (2015) Relationship between the removal of organic matter and the production of methane in subsurface flow constructed wetlands designed for wastewater treatment. Ecol Eng 83:296–304

    Article  Google Scholar 

  • Lundin M, Morrison GM (2002) A life cycle assessment based procedure for development of environmental sustainability indicators for urban water systems. Urban Water 4(2):145–152

    Article  Google Scholar 

  • Machado AP, Urbano L, Brito AG, Janknecht P, Salas JJ, Nogueira R (2007) Life cycle assessment of wastewater treatment options for small and decentralized communities. Water Sci Technol 56(3):15–22

    Article  CAS  Google Scholar 

  • Maltais-Landry G, Maranger R, Brisson J, Chazarenc F (2009) Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environ Pollut 157(3):748–754

    Article  CAS  Google Scholar 

  • Mander Ü, Lõhmus K, Teiter S, Mauring TN, Nurk K, Augustin J (2008) Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Sci Total Environ 404(2–3):343–353

    Article  CAS  Google Scholar 

  • Mander Ü, Dotro G, Ebie Y, Towprayoon S, Chiemchaisri C, Nogueira SF, Jamsranjav B, Kasak K, Truu J, Tournebize J, Mitsch WJ (2014) Greenhouse gas emission in constructed wetlands for wastewater treatment: a review. Ecol Eng 66:19–35

    Article  Google Scholar 

  • Mander Ü, Maddison M, Soosaar K, Koger H, Teemusk A, Truu J, Well R, Sebilo M (2015) The impact of a pulsing water table on wastewater purification and greenhouse gas emission in a horizontal subsurface flow constructed wetland. Ecol Eng 80:69–78

    Article  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74(1):3–16

    Article  CAS  Google Scholar 

  • Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Evol Microbiol 38(2):139–142

    CAS  Google Scholar 

  • Maucieri C, Barbera AC, Vymazal J, Borin M (2017) A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric For Meteorol 236:175–193

    Article  Google Scholar 

  • McPhillips L, Walter MT (2015) Hydrologic conditions drive denitrification and greenhouse gas emissions in stormwater detention basins. Ecol Eng 85:67–75

    Article  Google Scholar 

  • Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK (2015) Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands? Soil Biol Biochem 86:34–41

    Article  CAS  Google Scholar 

  • Metcalf & Eddy Inc, Tchobanoglous G, Burton FL, Stensel HD (2002) Wastewater engineering. Treatmentand reuse, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Molle P, Prost-Boucle S, Lienard A (2008) Potential for total nitrogen removal by combining vertical flow and horizontal flow constructed wetlands: a full-scale experiment study. Ecol Eng 34(1):23–29

    Article  Google Scholar 

  • Mueller JA, Boyle WC, Pöpel HJ (2002) Aeration: principles and practice. CRC Press, Boca Raton

    Google Scholar 

  • Murphy C, Rajabzadeh AR, Weber KP, Nivala J, Wallace SD, Cooper DJ (2016) Nitrification cessation and recovery in an aerated saturated vertical subsurface flow treatment wetland: field studies and microscale biofilm modeling. Bioresour Technol 209:125–132

    Article  CAS  Google Scholar 

  • Nivala J, Wallace S, Headley T, Kassa K, Brix H, van Afferden M, Müller R (2013) Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol Eng 61(Part B):544–554

    Article  Google Scholar 

  • Ortiz-Llorente MJ, Alvarez-Cobelas M (2012) Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ 59:328–337

    Article  CAS  Google Scholar 

  • Pan T, Zhu X, Ye Y (2011) Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: a case study in China. Ecol Eng 37(2):248–254

    Article  Google Scholar 

  • Pennock D, Yates T, Bedard-Haughn A, Phipps K, Farrell R, McDougal R (2010) Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian prairie pothole region. Geoderma 155(3–4):308–319

    Article  CAS  Google Scholar 

  • Pittoors E, Guo Y, Van Hulle SWH (2014) Oxygen transfer model development based on activated sludge and clean water in diffused aerated cylindrical tanks. Chem Eng J 243:51–59

    Article  CAS  Google Scholar 

  • Puyuelo B, Gea T, Sánchez A (2014) GHG emissions during the high-rate production of compost using standard and advanced aeration strategies. Chemosphere 109:64–70

    Article  CAS  Google Scholar 

  • Reay D, Smith P, Amstel AV (2010) Methane and climate change. Earthscan, Washington, DC

    Google Scholar 

  • Rosso D, Stenstrom MK, Larson LE (2008) Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Sci Technol 57(7):973–978

    Article  Google Scholar 

  • Rychlik JL, May T (2000) The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria. Curr Microbiol 40(3):176–180

    Article  CAS  Google Scholar 

  • Smet E, Van Langenhove H, De Bo I (1999) The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste. Atmos Environ 33:1295–1303

    Article  CAS  Google Scholar 

  • Soda S, Hamada T, Yamaoka Y, Ike M, Nakazato H, Saeki Y, Kasamatsu T, Sakurai Y (2012) Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Ecol Eng 39:63–70

    Article  Google Scholar 

  • Søvik AK, KløVe B (2007) Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Sci Total Environ 380(1–3):28–37

    Article  CAS  Google Scholar 

  • Sun L, Song C, Miao Y, Qiao T, Gong C (2013) Temporal and spatial variability of methane emissions in a northern temperate marsh. Atmos Environ 81:356–363

    Article  CAS  Google Scholar 

  • Sun J, Liang P, Yan X, Zuo K, Xiao K, Xia J, Qiu Y, Wu Q, Wu S, Huang X, Qi M, Wen X (2016) Reducing aeration energy consumption in a large-scale membrane bioreactor: process simulation and engineering application. Water Res 93:205–213

    Article  CAS  Google Scholar 

  • Syron E, Semmens MJ, Casey E (2015) Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate. Chem Eng J 273:120–129

    Article  CAS  Google Scholar 

  • Taricska JR, Huang JYC, Chen P, Hung YT, Zou SW (2009) In: Wang LK, Pereira NC, Hung YT, Shammas NK (eds) Biological Treatment Processes. The Humana Press, Totowa

    Google Scholar 

  • Tuttolomondo T, Licata M, Leto C, Leone R, La Bella S (2015) Effect of plant species on water balance in a pilot-scale horizontal subsurface flow constructed wetland planted with Arundo donax L. and Cyperus alternifolius L. – two-year tests in a Mediterranean environment in the West of Sicily (Italy). Ecol Eng 74:79–92

    Article  Google Scholar 

  • Uggetti E, Hughes-Riley T, Morris RH, Newton MI, Trabi CL, Hawes P, Puigagut J, Garcia J (2016) Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland. Sci Total Environ 559:212–217

    Article  CAS  Google Scholar 

  • US-EPA (2003) National menu of best management practices for storm water phase II. Office of Water, Washington, DC

    Google Scholar 

  • Vigano I, Van Weelden H, Holzinger R, Keppler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5(1):243–270

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45(1):61–69

    Article  CAS  Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res Atmos 101(D17):22775–22785

    Article  CAS  Google Scholar 

  • Wang Y, Inamori R, Kong H, Xu K, Inamori Y, Kondo T, Zhang J (2008) Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations. Ecol Eng 32(1):22–29

    Article  Google Scholar 

  • Willis J (2004) Data Analysis and Presentation Skills: An Introduction for the Life and Medical Sciences. Wiley, Chichester

    Google Scholar 

  • Wu ZB (2008) Integrated vertical-flow constructed wetland. Science Press, Beijing

    Google Scholar 

  • Wu H, Fan J, Zhang J, Ngo HH, Guo W, Liang S, Hu Z, Liu H (2015) Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment. Environ Sci Pollut R 22(19):14637–14650

    Article  Google Scholar 

  • Wu H, Lin L, Zhang J, Guo W, Liang S, Liu H (2016) Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent. Bioresour Technol 219:768–772

    Article  CAS  Google Scholar 

  • Wu H, Fan J, Zhang J, Ngo HH, Guo W (2018) Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: carbon dynamics. Environ Pollut 233:933–942

    Article  CAS  Google Scholar 

  • Xiao K, Xu Y, Liang S, Lei T, Sun J, Wen X, Zhang H, Chen C, Huang X (2014) Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Front Environ Sci Eng China 8(6):805–819

    Article  CAS  Google Scholar 

  • Xu D, Wang L, Li H, Li Y, Howard A, Guan Y, Li J, Xu H (2015) The forms and bioavailability of phosphorus in integrated vertical flow constructed wetland with earthworms and different substrates. Chemosphere 134:492–498

    Article  CAS  Google Scholar 

  • Yan Q, Gao X, Guo J, Zhu Z, Feng G (2016) Insights into the molecular mechanism of the responses for Cyperus alternifolius to PhACs stress in constructed wetlands. Chemosphere 164:278–289

    Article  CAS  Google Scholar 

  • Yang G (2008) The Effect of Low Temperature on Biogas Production Capability and Isolation of Methanogenic Bacteria (in Chinese). Northwest A & F University, Yangling, p 51

    Google Scholar 

  • Yang J, Liu J, Hu X, Li X, Wang Y, Li H (2013) Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biol Biochem 61(0):52–60

    Article  CAS  Google Scholar 

  • Yang P, He Q, Huang J, Tong C (2015) Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmos Environ 115:269–277

    Article  CAS  Google Scholar 

  • Ye R, Espe MB, Linquist B, Parikh SJ, Doane TA, Horwath WR (2016) A soil carbon proxy to predict CH4 and N2O emissions from rewetted agricultural peatlands. Agric Ecosyst Environ 220:64–75

    Article  CAS  Google Scholar 

  • Zhang D, Gersberg RM, Keat TS (2009) Constructed wetlands in China. Ecol Eng 35(10):1367–1378

    Article  Google Scholar 

  • Zhang L, Zhang L, Liu Y, Shen Y, Liu H, Xiong Y (2010) Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination 250(3):915–920

    Article  CAS  Google Scholar 

  • Zhao Z, Chang J, Han W, Wang M, Ma D, Du Y, Qu Z, Chang SX, Ge Y (2016) Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands. Ecol Eng 95:390–398

    Article  Google Scholar 

  • Zhu X, Song C, Guo Y, Sun X, Zhang X, Miao Y (2014) Methane emissions from temperate herbaceous peatland in the Sanjiang plain of Northeast China. Atmos Environ 92:478–483

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51278318), the Chengdu Science & Technology Bureau (2015-HM01-00325-SF), the Science and Technology Department of Sichuan Province (18ZDYF3209), and the State Key Laboratory of Hydraulics and Mountain River Engineering in China (SKHL1716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Luo.

Additional information

Responsible editor: Philippe Garrigues

Research highlights

• Optimal intermittent micro-aeration control of CH4 emission from integrated vertical flow constructed wetlands (IVCWs): 20 min aeration time, 340 min interruption time, 3.9 m3 h−1 aeration intensity, and every 6 h as an aeration operation period.

• Controlled condition on CH4 emission in IVCWs were the order of the intermittent micro-aeration diffuser distributions at the tank bottom > the aeration intensity (m3 h−1) > the aeration time (minutes) > the water tables.

• Averagely distributed micro-aeration diffusers was less CH4 emission than the middle intensively distributed micro-aeration diffusers at the tank bottom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, K., Fan, L. et al. Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment. Environ Sci Pollut Res 25, 24426–24444 (2018). https://doi.org/10.1007/s11356-018-2226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2226-5

Keywords

Navigation