Skip to main content
Log in

Treatment of soil washing wastewater via adsorption of lead and zinc using graphene oxide

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present work, graphene oxide (GO) was synthesized via the modified Hummers method and utilized in treating real soil washing wastewater via adsorptive removal of lead (Pb) and zinc (Zn). Characterization analysis of GO was performed using X-ray diffraction, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The Van’t Hoff, Eyring, and Arrhenius equations were applied to determine the activation and thermodynamic parameters namely activation energy (Ea), standard Gibbs energy change (ΔG°), standard enthalpy change (ΔH°), standard entropy change (ΔS°), change in activation Gibbs energy (ΔG#), change in activation enthalpy (ΔH#), and change in activation entropy (ΔS#). Based on the high coefficient of determination values (0.8882 ≥ R2 ≥ 0.9094) and low values of SSE (0.0292 ≤ SSE ≤ 0.0511) and ARE (0.8014 ≤ ARE ≤ 0.8822), equilibrium data agreed well with the Freundlich isotherm. The maximum adsorption capacity for Pb(II) and Zn(II) was determined to be 11.57 and 4.65 mg/g, respectively. Kinetic studies revealed that pseudo-second-order equation fitted well with the experimental data, which indicates that chemisorption is the rate-determining step of the adsorption system. Results have shown the possibility of GO as a potential adsorbent material in the treatment of soil washing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968

    Article  CAS  Google Scholar 

  • Ahmad MA, Ahmad Puad NA, Bello OS (2014) Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour Ind 6:18–35

    Article  Google Scholar 

  • Ahn JH, Je JH (2012) Stretchable electronics: materials, architectures and integrations. J Phys D Appl Phys 45:103001–103014

    Article  CAS  Google Scholar 

  • Alamudy HA, Cho K (2018) Selective adsorption of cesium from aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602

    Article  CAS  Google Scholar 

  • Anirudhan TS, Deepa JR (2017) Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J Colloid Interface Sci 490:343–356

    Article  CAS  Google Scholar 

  • Araújo CST, Almeida ILS, Rezende HC, Rezebde HC, Marcionilio SMLO, Léon JJL, de Matos TN (2018) Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem J 137:348–354

    Article  CAS  Google Scholar 

  • Bandala ER, Velasco Y, Torres LG (2008) Decontamination of soil washing wastewater using solar driven advanced oxidation processes. J Hazard Mater 160:402–407

    Article  CAS  Google Scholar 

  • Bhowmik D, Chiranjib KP (2010) A potential medicinal importance of zinc in human health and chronic. Int J Pharm 1:5–11

    Google Scholar 

  • Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, Kyotani T, Monthioux M, Park CR, Tascon JMD, Zhang J (2013) All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6

    Article  CAS  Google Scholar 

  • Boyd GE, Adamson AM, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 63:2836–2848

    Article  Google Scholar 

  • Buchauer M (1973) Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper, and lead. Environ Sci Technol 7:131–135

    Article  CAS  Google Scholar 

  • Can N, Ömür BC, Altindal A (2016) Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sensors Actuators B Chem 237:953–961

    Article  CAS  Google Scholar 

  • Cechinel MAP, de Souza MAGU, de Souza AAU (2014) Study of lead (II) adsorption onto activated carbon originating from cow bone. J Clean Prod 65:342–349

    Article  CAS  Google Scholar 

  • Chae H, Kang WH, Cheong JG, Park JY, Chang CH (2012) Removal of arsenic in soil washing water using GAC coated with Fe(III). Int Conf Environ Sci Technol 30:10–14

    CAS  Google Scholar 

  • Chair K, Bedoui A, Bensalah N, Sáez C, Fernández-Morales FJ, Costillas S, Cañizares P, Rodrigo MA (2017) Treatment of soil-washing effluents polluted with herbicide oxyfluorfen by combined biosorption-electrolysis. Ind Eng Chem Res 56:1903–1910

    Article  CAS  Google Scholar 

  • da Mota I, de Castro JA, Casqueira RG, de Oliveira AG Jr (2015) Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. J Mater Res Technol 4:109–113

    Article  CAS  Google Scholar 

  • de Melo NH, de Oliveira Ferreira ME, Neto EMS, Martins PR, Ostroski IC (2018) Evaluation of the adsorption process using activated bone char functionalized with magnetite nanoparticles. Environ Nanotechnol Monit Manage 10:427–434

    Google Scholar 

  • Depci T, Kul AR, Önal Y (2012) Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single- and multi-solute systems. Chem Eng J 200-202:224–236

    Article  CAS  Google Scholar 

  • Ding S, Sun S, Xu H, Yang B, Liu Y, Wang H, Chen D, Zhang R (2019) Preparation and adsorption property of graphene oxide by using waste graphite from diamond synthesis industry. Mater Chem Phys 221:47–57

    Article  CAS  Google Scholar 

  • Dizaji AK, Mortaheb HR, Mokhtarani B (2017) Preparation of supported catalyst by adsorption of polyoxometalate on graphene oxide/reduced graphene oxide. Mater Chem Phys 199:424–434

    Article  CAS  Google Scholar 

  • dos Santos EV, Sáez C, Martínez -Huitle CA, Cañizares P, Rodrigo MA (2015) Combined soil washing and CDEO for the removal of atrazine from soils. J Hazard Mater 300:129–134

    Article  CAS  Google Scholar 

  • dos Santos EV, Sáez C, Martínez -Huitle CA, Cañizares P, Rodrigo MA (2016) Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes. J Environ Manag 171:260–266

    Article  CAS  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  • Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of the activated charcoal. Proc USSR Acad Sci Phys Chem 55:331–337

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  • Ferraro A, van Hullebusch ED, Huguenot D, Fabbricino M, Esposito G (2015) Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: case of a Cu contaminated soil. J Environ Manag 163:62–69

    Article  CAS  Google Scholar 

  • Fito J, Tefera N, Van Hulle SWH (2017) Adsorption of distillery spent wash on activated bagasse fly ash: kinetics and thermodynamics. J Environ Chem Eng 5:5381–5388

    Article  CAS  Google Scholar 

  • Freundlich HM (1906) Over the adsorption in solution. J Phys Chem 57:385–470

  • Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536

    Article  CAS  Google Scholar 

  • Gan X, Teng Y, Ren W, Ma J, Peter C, Luo Y (2017) Optimization of ex-situ washing removal of polycyclic aromatic hydrocarbons from a contaminated soil using nano-sulfonated graphene. Pedosphere 27:527–536

    Article  Google Scholar 

  • Gharibzadeh F, Kalantary RR, Nasseri S, Esrafili A, Azari A (2016) Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process. Sep Purif Tecnhol 168:248–256

    Article  CAS  Google Scholar 

  • Gong Y, Zhao D, Wang Q (2018) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res 147:440–460. https://doi.org/10.1016/j.watres.2018.10.024

    Article  CAS  Google Scholar 

  • Gupta SS, Bhattacharya KG (2005) Interaction of metal ions with clays: I. A case study with Pb(II). Appl Clay Sci 30:199–208

    Article  CAS  Google Scholar 

  • Hawkes SJ (1997) What is a “heavy metal”? J Chem Educ 74:1374

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Ijagbemi CO, Baek MH, Kim DS (2009) Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J Hazard Mater 166:538–546

    Article  CAS  Google Scholar 

  • James RO, Healy TW (1972) Adsorption of hydrolysable metals at the oxide-water interface. III. A thermodynamic model of adsorption. J Colloid Interface Sci 40:65–80

    Article  CAS  Google Scholar 

  • Jordan M (1975) Effects of zinc smelter emissions and fire on a chestnut-oak woodland. Ecology 56:78–91

    Article  CAS  Google Scholar 

  • Kan CC, Aganon MC, Futalan CM, Dalida MLP (2013) Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand. J Environ Sci 25:1483–1491

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi B, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Kim YS, Kim JH (2019) Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J Chem Thermodyn 130:104–113

    Article  CAS  Google Scholar 

  • Kumar YP, King P, Prasad VSRK (2006) Comparison for adsorption modelling of copper and zinc from aqueous solution by Ulva fasciata sp. J Hazard Mater 137:1246–1251

    Article  CAS  Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

  • Lagergren SY (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  • Lancranjan I, Popescu HI, Găvănescu O, Klepsch I, Serbănescu M (1975) Reproductive ability of workmen occupationally exposed to lead. Arch Environ Health 30:396–401

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25

    Google Scholar 

  • Lim YS, Kim JH (2017) Isotherm, kinetic and thermodynamic studies on the adsorption of 13-dhydroxybaccatin III from Taxus chinensis onto Sylopute. J Chem Thermodyn 115:261–268

    Article  CAS  Google Scholar 

  • Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy-metal contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063

    Article  CAS  Google Scholar 

  • Mohan S, Kumar V, Singh DK, Hasan SH (2017) Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: isotherm, kinetic and thermodynamic modeling of adsorption. J Environ Chem Eng 5:2259–2273

    Article  CAS  Google Scholar 

  • Moon DH, Lee JR, Wazne M, Park JH (2012) Assessment of soil washing for Zn contaminated soils using various washing solutions. J Ind Eng Chem 18:822–825

    Article  CAS  Google Scholar 

  • Nandakumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: The use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

  • Nebaghe KC, El Boundati Y, Ziat K, Naji A, Rghioui L, Saidi M (2016) Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper(II) onto treated Martil sand. Fluid Phase Equilib 430:188–194

    Article  CAS  Google Scholar 

  • Novais RM, Buruberri LH, Seabra MP, Labrincha JA (2016) Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J Hazard Mater 318:631–640

    Article  CAS  Google Scholar 

  • Nupearachchi CN, Mahatantila K, Vitanage M (2017) Application of graphene for decontamination of water; implications for sorptive removal. Groundw Sustain Dev 5:206–215

    Article  Google Scholar 

  • Onotri L, Race M, Clarizia L, Guida M, Alfè M, Andreozzi R, Marotta R (2017) Solar photocatalytic processes for treatment of soil washing wastewater. Chem Eng J 318:10–18

    Article  CAS  Google Scholar 

  • Palaparthy VS, Kalita H, Surya SG, Baghini MS, Aslam M (2018) Graphene oxide based soil moisture microsensor for in situ agriculture applications. Sens Antuators B 273:1660–1669

    Article  CAS  Google Scholar 

  • Park B, Son Y (2016) Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrason Sonochem 35:640–645

    Article  CAS  Google Scholar 

  • Popuri SR, Vijaya Y, Boddu VM, Abburi K (2009) Adsorptive removal of copper and nickel ions from water using chitosan-coated PVC beads. Bioresour Technol 100:194–199

    Article  CAS  Google Scholar 

  • Priya T, Dhanalakshimi N, Thennarasu S, Thinakaran N (2018) A novel voltammetric sensor for the simultaneous detection of Cd2+ and Pb2+ using graphene oxide/k-carrageenan/L-cysteine nanocomposite. Carbohydr Polym 182:199–206

    Article  CAS  Google Scholar 

  • Pye CC, Corbeil CR, Rudolph WW (2006) An ab initio investigation of zinc chloro complexes. Phys Chem Chem Phys 8:5428–5436

    Article  CAS  Google Scholar 

  • Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  CAS  Google Scholar 

  • Rosas JM, Santos A, Romero A (2013) Soil-washing effluent treatment by selective adsorption of toxic organic contaminants on activated carbon. Water Air Soil Pollut 224:1–10

    Article  CAS  Google Scholar 

  • Sarwar N, Imram M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Satyro S, Race M, Di Natale F, Erto A, Guida M, Marotta R (2016) Simultaneous removal of heavy metals from field-polluted soils and treatment of soil washing effluents through combined adsorption and artificial sunlight-driven photocatalytic processes. Chem Eng J 283:1484–1493

    Article  CAS  Google Scholar 

  • Sen TS, Gomez D (2011) Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination 267:286–294

    Article  CAS  Google Scholar 

  • Seppalainen A, Hernberg S (1980) Subclinical lead neuropathy. Am J Ind Med 1:413–420

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290–297

    Article  CAS  Google Scholar 

  • Sherlala AIA, Raman AAA, Bello MM, Asghar A (2018) A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–1017

    Article  CAS  Google Scholar 

  • Sitko R, Janik P, Feist B, Talik E, Gagor A (2014) Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry. ACS Appl Mater Interfaces 6:20144–20153

    Article  CAS  Google Scholar 

  • Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154

    Article  CAS  Google Scholar 

  • Sun J, Li X, Ai X, Liu J, Yin Y, Huang Y, Zhou H, Huang K (2018) Efficient removal of cadmium from soil-washing effluents by garlic peel biosorbent. Environ Sci Pollut Res 25:19001–19011

    Article  CAS  Google Scholar 

  • Tabelin CB, Igarashi T, Villacorte-Tabelin M, Park I, Opiso EM, Ito M, Hiroyoshi N (2018) Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci Total Environ 645:1522–1553

    Article  CAS  Google Scholar 

  • Temkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Phys Chim URSS 12:217–222

  • Usman ARA (2008) The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 144:334–343

    Article  CAS  Google Scholar 

  • Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  • Weng C, Huang C (2004) Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids Surf A Physicochem Eng Asp 247:137–143

    Article  CAS  Google Scholar 

  • White RL, White CM, Turgut H, Massoud A, Tian ZR (2018) Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J Taiwan Inst Chem Eng 85:18–28

    Article  CAS  Google Scholar 

  • Yang ST, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351:122–127

    Article  CAS  Google Scholar 

  • Yang H, Shan C, Li F, Zhang Q, Han D, Niu L (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19:8856–8860

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Research Foundation (NRF) of Korea through Ministry of Education (No. 2016R1A6A1A03012812) for the financial support of this research undertaking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurng-Jae Yee.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futalan, C.M., Phatai, P., Kim, J. et al. Treatment of soil washing wastewater via adsorption of lead and zinc using graphene oxide. Environ Sci Pollut Res 26, 17292–17304 (2019). https://doi.org/10.1007/s11356-019-05010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05010-7

Keywords

Navigation