Skip to main content

Advertisement

Log in

Nanoinformatics and biomolecular nanomodeling: a novel move en route for effective cancer treatment

  • Nanotechnology, Nanopollution, Nanotoxicology and Nanomedicine (NNNN)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Empowering role of nanoinformatics in design and elucidation of nanoparticles for effective cancer treatment has made this field a fascinating area for researchers, inspiring them to enhance up the quality and efficacy of existing anticancer medicines. Theoretical and computational modeling is being seen as a forefront solution for problems related to surface chemistry, optimized geometry, or other properties in nanoparticle designing and drug delivery. The current review aims to acquaint with the insight story of the incubation of in silico tools and techniques in nanotechnology to develop better anticancer nanomedicines. The review also recapitulates the assets and liabilities of this field and present an outline of existing inventiveness and endeavors of nanoinformatics. We propose how nanoinformatics could hasten up the advancements in anticancer nanomedicines through use of computational tools, nanoparticles repositories & various modeling and simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad J, Akhter S, Rizwanullah M et al (2015a) Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 8:55

    CAS  Google Scholar 

  • Ahmad J, Amin S, Rahman M, Rub R, Singhal M, Ahmad M, Rahman Z, Addo R, Ahmad F, Mushtaq G, Kamal M, Akhter S (2015b) Solid matrix based lipidic nanoparticles in oral cancer chemotherapy: applications and pharmacokinetics. Curr Drug Metab 16:633–644

    CAS  Google Scholar 

  • Ahmad J, Akhter S, Greig NH et al (2016) Engineered nanoparticles against MDR in Cancer: the state of the art and its prospective. Curr Pharm Des 22:4360–4373

    CAS  Google Scholar 

  • Akhtar S, Al-Sagair OA, Arif JM (2011) Novel aglycones of steroidal glycoalkaloids as potent tyrosine kinase inhibitors: role in VEGF and EGF receptors targeted angiogenesis. Lett Drug Des Discov 8:205–215

    CAS  Google Scholar 

  • Ali I (2011) Nano anti-cancer drugs: pros and cons and future perspectives. Curr Cancer Drug Targets 11:131–134

    CAS  Google Scholar 

  • Ali A, Ahmed Sheikh I, Mirza Z et al (2015) Application of proteomic tools in modern nanotechnological approaches towards effective management of neurodegenerative disorders. Curr Drug Metab 16:376–388

    CAS  Google Scholar 

  • Appel N, Rückerl S, Langer M (2016) Nanolink: a robust and efficient protocol for small satellite radio links. In: 4S symposium: small satellites, systems and services proceedings. Valletta, pp 1–10

  • Aziz ZA b A, Ahmad A, Mohd-Setapar SH et al (2017) Recent advances in drug delivery of polymeric nano-micelles. Curr Drug Metab 18:16–29

    Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    CAS  Google Scholar 

  • Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cell 31:295–302

    CAS  Google Scholar 

  • Baker NA (2010) NIH cancer biomedical informatics grid (caBIG®) ICR nanotechnology working group. In: Nanoinformatics 2010, November 3 – 5, Arlington, VA

  • Bañares MA, Haase A, Tran L, Lobaskin V, Oberdörster G, Rallo R, Leszczynski J, Hoet P, Korenstein R, Hardy B, Puzyn T (2017) CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology. Nanotoxicology 11:839–845

    Google Scholar 

  • Bar-Zeev M, Livney YD, Assaraf YG (2017) Targeted nanomedicine for cancer therapeutics: towards precision medicine overcoming drug resistance. Drug Resist Updat 31:15–30

    Google Scholar 

  • Berger M (2014) An all-carbon optical diode for photonic computing available at www.nanowerk.com posted on Sep 01, 2014

  • Bhutani H, Kurmi M, Singh S, Beg S, Singh B (2014) Quality by design (QbD) in analytical sciences: an overview. Pharma Times 46(8):71–75

  • Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854

    CAS  Google Scholar 

  • Chandolu V, Dass CR (2013) Treatment of lung cancer using nanoparticle drug delivery systems. Curr Drug Discov Technol 10:170–176

    CAS  Google Scholar 

  • Chavali AK, D’Auria KM, Hewlett EL, Pearson RD, Papin JA (2012) A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends Microbiol 20:113–123

    CAS  Google Scholar 

  • Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, Clogston JD, McNeil SE (2013) Common pitfalls in nanotechnology: lessons learned from NCI’s nanotechnology characterization laboratory. Integr Biol 5:66–73

    CAS  Google Scholar 

  • Dang Y, Zhang Y, Chen H, Brown SA, Hu PJH, Nunamaker JF (2012) Theory-informed design and evaluation of an advanced search and knowledge mapping system in nanotechnology. J Manag Inf Syst 28:99–128

    Google Scholar 

  • Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    CAS  Google Scholar 

  • Day ES, Morton JG, West JL (2009) Nanoparticles for thermal cancer therapy. J Biomech Eng 131:74001

    Google Scholar 

  • De la Iglesia D, Maojo V, Chiesa S et al (2011) International efforts in nanoinformatics research applied to nanomedicine. Methods Inf Med 50:84–95

    Google Scholar 

  • De la Iglesia D, Cachau RE, García-Remesal M, Maojo V (2013) Nanoinformatics knowledge infrastructures: bringing efficient information management to nanomedical research. Comput Sci Discov 6:14011

    Google Scholar 

  • van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728

    Google Scholar 

  • Diao Y-Y, Li H-Y, Fu Y-H et al (2011) Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells. Int J Nanomedicine 6:1955

    CAS  Google Scholar 

  • Dimakis N (2012) Computational nanoscience: applications for molecules, clusters, and solids, by Kálmán Varga and Joseph a. Driscoll. Scope: review. Level: advanced undergraduates and graduate students in computational physics, material science, and engineering. Contemporary Physics 53(2):183–184

    Google Scholar 

  • Ding H, Ma Y (2016) Design strategy of surface decoration for efficient delivery of nanoparticles by computer simulation. Sci Rep 6:26783

    CAS  Google Scholar 

  • Duncan GA, Bevan MA (2015) Computational design of nanoparticle drug delivery systems for selective targeting. Nanoscale 7:15332–15340

    CAS  Google Scholar 

  • Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029

    CAS  Google Scholar 

  • Erkimbaev AO, Zitserman VY, Kobzev GA, Trakhtengerts MS (2016) Nanoinformatics: problems, methods, and technologies. Sci Tech Inf Process 43:199–216

    Google Scholar 

  • Folkman J (2008) Tumor angiogenesis: from bench to bedside. In: Marmé D, Fusenig N (eds) Tumor angiogenesis. Springer, Berlin, Heidelberg

  • Fullstone G, Wood J, Holcombe M, Battaglia G (2015) Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci Rep 5:10649

    Google Scholar 

  • Gaheen S, Hinkal GW, Morris SA et al (2013) caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine. Comput Sci Discov 6:14010

    Google Scholar 

  • Gajewicz A, Cronin MTD, Rasulev B et al (2014) Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Nanotechnology 26:15701

    Google Scholar 

  • Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 102:9469–9474

    CAS  Google Scholar 

  • Ghazani AA, Lee JA, Klostranec J, Xiang Q, Dacosta RS, Wilson BC, Tsao MS, Chan WC (2006) High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett 13(6(12)):2881–2886

    Google Scholar 

  • Gonzalez-Ibanez AM, Gonzalez-Nilo F, Cachau R (2009) The collaboratory for structural nanobiology. Biophys J 96:49a

    Google Scholar 

  • González-Nilo F, Pérez-Acle T, Guínez-Molinos S, Geraldo DA, Sandoval C, Yévenes A, Santos LS, Laurie VF, Mendoza H, Cachau RE (2011) Nanoinformatics: an emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biol Res 44:43–51

    Google Scholar 

  • Grassi M, Grassi G (2005) Mathematical modelling and controlled drug delivery: matrix systems. Curr Drug Deliv 2:97–116

    CAS  Google Scholar 

  • Gupta C, Prakash D, Gupta S (2017) Cancer treatment with nano-diamonds. Front Biosci 9:62–70

    Google Scholar 

  • Hastings J, Jeliazkova N, Owen G, Tsiliki G, Munteanu CR, Steinbeck C, Willighagen E (2015) eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. J Biomed Semantics 6:10

    Google Scholar 

  • Hull MS, Bowman D (2014) Nanotechnology environmental health and safety: risks, regulation, and management, 2nd edn. Elsevier Inc

  • Humod AT, Abed WNA-D (2012) Fuzzy-swarm controller for automatic voltage regulator of synchronous generator. Engineering and Technology Journal 30(3):454–473

  • Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6:146–155

    CAS  Google Scholar 

  • Ironi L, Tentoni S (2003) Model-based assessment of physicochemical properties of drug delivery materials. Comput Chem Eng 27(6):803–812

  • Jabir NR, Tabrez S, Ashraf GM et al (2012) Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 7:4391

    CAS  Google Scholar 

  • Klimeck G, McLennan M, Brophy SP, Adams III GB, Lundstrom MS (2008) Nanohub. Org: advancing education and research in nanotechnology. Comput Sci Eng 10:17–23

    CAS  Google Scholar 

  • Kore PP, Mutha MM, Antre RV, Oswal RJ, Kshirsagar SS (2012) Computer-aided drug design: an innovative tool for modeling. Open J Med Chem 2:139–148

    CAS  Google Scholar 

  • Lafourcade M, Joubert A, Le Brun N (2015) Games with a purpose (GWAPS). John Wiley & Sons, Inc.

  • Li Y, Stroberg W, Lee T-R, Kim HS, Man H, Ho D, Decuzzi P, Liu WK (2014) Multiscale modeling and uncertainty quantification in nanoparticle-mediated drug/gene delivery. Comput Mech 53:511–537

    Google Scholar 

  • Li Y, Lian Y, Zhang LT, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2016) Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles. Interface Focus 6:20150086

    Google Scholar 

  • Liu P, Kim B, Friesner RA, Berne BJ (2005) Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci U S A 102:13749–13754

    CAS  Google Scholar 

  • Liu Y, Shah S, Tan J (2012) Computational modeling of nanoparticle targeted drug delivery. Rev Nanosci Nanotechnol 1:66–83

    CAS  Google Scholar 

  • López-Alonso C, García-Cambero JP (2014) Informatic resources useful for the development of biomedical applications of nanomaterials and their toxicological evaluation. Rev Toxicol 31:23–30

  • Loverde SM, Klein ML, Discher DE (2012) Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of Taxol in worm-like PEG-PCL micelles. Adv Mater 24:3823–3830

    CAS  Google Scholar 

  • Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4:546–547

    CAS  Google Scholar 

  • Maojo V, Martin-Sanchez F, Kulikowski C, Rodriguez-Paton A, Fritts M (2010) Nanoinformatics and DNA-based computing: catalyzing nanomedicine. Pediatr Res 67:481–489

    CAS  Google Scholar 

  • Maojo V, Fritts M, de la Iglesia D et al (2012) Nanoinformatics: a new area of research in nanomedicine. Int J Nanomedicine 7:3867

    Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64:673–702

    CAS  Google Scholar 

  • Melagraki G, Afantitis A (2014) Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles. RSC Adv 4:50713–50725

    CAS  Google Scholar 

  • Nalwa H (1999) Handbook of nanostructured materials and nanotechnology, five-volume set. Academic Press

  • Nano4Me.Org. NACK educational resources. The Pennsylvania State University Accesed May 30, 2014

  • Neumann D, Lehr C-M, Lenhof H-P, Kohlbacher O (2004) Computational modeling of the sugar–lectin interaction. Adv Drug Deliv Rev 56:437–457

    CAS  Google Scholar 

  • Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenge. J Nanomedic Nanotechnol 2:103e. https://doi.org/10.4172/2157-7439.1000103e

  • Ok ZD, Benneyan JC, Isaacs JA (2009) Nanotechnology environmental, health, and safety issues: brief literature review since 2000. Ieee International Symposium on Sustainable Systems and Technology, Issst ’09 in Cooperation with 2009 Ieee International Symposium on Technology and Society, Istas. https://doi.org/10.1109/ISSST.2009.5156772

  • Orlandini S, Pinzauti S, Furlanetto S (2013) Application of quality by design to the development of analytical separation methods. Anal Bioanal Chem 405:443–450

    CAS  Google Scholar 

  • Ostraat ML, Mills KC, Guzan KA, Murry D (2013) The nanomaterial registry: facilitating the sharing and analysis of data in the diverse nanomaterial community. Int J Nanomedicine 8:7

    CAS  Google Scholar 

  • Ostrowski AD, Martin T, Conti J, Hurt I, Harthorn BH (2009) Nanotoxicology: characterizing the scientific literature, 2000–2007. J Nanopart Res 11:251–257

    CAS  Google Scholar 

  • Petersen A, Anderson A, Allan S, Wilkinson C (2006) Nanotechnology in the news. Nanotechweb.org. Accessed 15 March 2018

  • Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, Baecher-Allan C, McLachlan GJ, Tamayo P, Hafler DA, de Jager PL, Mesirov JP (2009) Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci 106:8519–8524

    CAS  Google Scholar 

  • Raffa V, Ciofani G, Vittorio O, Riggio C, Cuschieri A (2010) Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine 5:89–97

    CAS  Google Scholar 

  • Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172

    CAS  Google Scholar 

  • Rajeshwari A, Prathna TC, Balajee J et al (2013) Computational approach for particle size measurement of silver nanoparticle from electron microscopic image. Int J Pharm Pharm Sci 5:619

    Google Scholar 

  • Reznik-Zellen R, Stevens B, Thorn M et al (2008) InterNano: e-Science for the nanomanufacturing community. In: eScience, 2008. eScience’08. IEEE fourth international conference on IEEE, pp 382–383

  • Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379

    CAS  Google Scholar 

  • Ruenraroengsak P, Cook JM, Florence AT (2010) Nanosystem drug targeting: facing up to complex realities. J Control Release 141:265–276

    CAS  Google Scholar 

  • Sarkar A, Fatima I, Mohammad Sajid Jamal Q, Sayeed U, Kalim A. Khan M, Akhtar S, Amjad Kamal M, Farooqui A, Haris Siddiqui M (2017a) Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr Drug Metab 18:129–137

    CAS  Google Scholar 

  • Sarkar S, Osama K, Mohammad Sajid Jamal Q et al (2017b) Advances and implications in nanotechnology for lung cancer management. Curr Drug Metab 18:30–38

    CAS  Google Scholar 

  • Schulte PA, Geraci CL, Zumwalde RD, Castranova V, Kuempel E, Methner MM, Hoover MD, Murashov V (2010) Nanotechnologies and nanomaterials in the occupational setting. J Occup Environ Hyg 1:63–68

  • Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(80):983–985

    CAS  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    CAS  Google Scholar 

  • Shirsat AE, Chitlange SS (2015) QUALITY BY DESIGN APPROACH TO OPTIMIZATION OF TACROLIMUS LOADED PLGA NANOPARTICLES. Int J Pharm Sci Res 6:4342

    CAS  Google Scholar 

  • Shityakov S, Roewer N, Broscheit J-A, Förster C (2017) In silico models for nanotoxicity evaluation and prediction at the blood-brain barrier level: a mini-review. Comput Toxicol 2:20–27

    Google Scholar 

  • Singh J, Jaggi P, Kaur S (2016) Nano-medicine: promising drug for future in research and reviews. Journal of Pharmaceutics and Nanotechnology 4:14–22

  • Sykes EA, Dai Q, Sarsons CD, Chen J, Rocheleau JV, Hwang DM, Zheng G, Cramb DT, Rinker KD, Chan WCW (2016) Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci 113:E1142–E1151

    CAS  Google Scholar 

  • Tantra R, Oksel C, Puzyn T, Wang J, Robinson KN, Wang XZ, Ma CY, Wilkins T (2015) Nano (Q) SAR: challenges, pitfalls and perspectives. Nanotoxicology 9:636–642

    CAS  Google Scholar 

  • Thomas DG, Pappu RV, Baker NA (2011) NanoParticle ontology for cancer nanotechnology research. J Biomed Inform 44:59–74

    Google Scholar 

  • Thomas DG, Gaheen S, Harper SL, Fritts M, Klaessig F, Hahn-Dantona E, Paik D, Pan S, Stafford GA, Freund ET, Klemm JD, Baker NA (2013) ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format. BMC Biotechnol 13:2

    Google Scholar 

  • Toxnet L (2006) Toxicology data network. Hazard Subst Data Bank (HSDB) United States Natl Libr Med data tabun http//toxnet.nlm.nih.gov/cgi-bin/sis/search/f. Accessed 25 March 2018

  • Ushaa SM, Eswaran V (2012) MODELING AND SIMULATION OF NANOSENSOR ARRAYS FOR AUTOMATED DISEASE DETECTION AND DRUG DELIVERY UNIT. Int J Adv Eng Technol 2:564

    Google Scholar 

  • Voter AF, Montalenti F, Germann TC (2002) Extending the time scale in atomistic simulation of materials. Annu Rev Mater Res 32:321–346

    CAS  Google Scholar 

  • Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58:97–110

    Google Scholar 

  • Willighagen E (2015) NanoWiki (release 1). https://doi.org/10.6084/m9.figshare.1330208

  • Xia X-R, Monteiro-Riviere NA, Riviere JE (2010) An index for characterization of nanomaterials in biological systems. Nat Nanotechnol 5:671–675

    CAS  Google Scholar 

  • Xu X, Khan MA, Burgess DJ (2011) A quality by design (QbD) case study on liposomes containing hydrophilic API: I. formulation, processing design and risk assessment. Int J Pharm 419:52–59

    CAS  Google Scholar 

  • Yallapu MM, Ebeling MC, Jaggi M, Chauhan SC (2013) Plasma proteins interaction with curcumin nanoparticles: implications in cancer therapeutics. Curr Drug Metab 14:504–515

    CAS  Google Scholar 

  • Yerlikaya F, Ozgen A, Vural I, Guven O, Karaagaoglu E, Khan MA, Capan Y (2013) Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci 102:3748–3761

    CAS  Google Scholar 

  • Yezhelyev MV, Al-Hajj A, Morris C, Marcus AI, Liu T, Lewis M, Cohen C, Zrazhevskiy P, Simons JW, Rogatko A, Nie S (2007) In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater 19(20):3146–3151

    CAS  Google Scholar 

  • Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531

    CAS  Google Scholar 

  • Yingling YG, Shapiro BA (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7:2328–2334

    CAS  Google Scholar 

  • Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z (2016) Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. https://doi.org/10.1155/2016/1087250

    Google Scholar 

  • Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  Google Scholar 

  • Yun Y-H, Eteshola E, Bhattacharya A, Dong Z, Shim JS, Conforti L, Kim D, Schulz M, Ahn C, Watts N (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9:9275–9299

    CAS  Google Scholar 

  • Zhao S, Iyengar R (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 52:505–521

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Akhtar.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Sharma, M., Sajid Jamal, Q.M. et al. Nanoinformatics and biomolecular nanomodeling: a novel move en route for effective cancer treatment. Environ Sci Pollut Res 27, 19127–19141 (2020). https://doi.org/10.1007/s11356-019-05152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05152-8

Keywords

Navigation