Skip to main content
Log in

Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Different microalgae species produce varying quantity and quality of the lipids. Fatty acid methyl ester composition, which comprises both saturated and unsaturated contents, critically affects biodiesel properties. Current study compares six locally isolated microalgae strains belonging to three classes (Trebouxiophyceae, Chlorophyceae, and Cyanophyceae) on the basis of lipid content and biodiesel properties. All the six species are grown in similar condition up to the late stationary phase, and their lipid content and fatty acid methyl ester composition are measured experimentally. Multi-criteria decision analysis (MCDA) tool has ranked Calothrix species (class Cyanophyceae) on the top, owing to better cetane number, density and oxidation stability; whereas Chlorococcum species (class Chlorophyceae) is ranked second because of its higher lipid content, better cold flow property, and low viscosity. Property analysis of these two species is extended in the enlarge temperature range for five properties, vapor pressure, latent heat of vaporization, liquid density, liquid viscosity and vapor diffusivity, which are important in spray and combustion modeling. It is found through detailed property estimation that Chlorococcum sp. is a more suitable species in comparison with Calothrix sp. as it is having better properties and its lipid content is much higher than that of Calothrix sp. Although the properties of microalgae biodiesel are poorer in comparison with conventional diesel fuel, a greater number of such studies will help in understanding the requisite changes as required for microalgae biodiesel–based engine and their properties as compared with conventional diesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CFPP:

Cold filter plugging point (°C)

CN:

Cetane number

D :

Number of double bonds

D AB :

Diffusion coefficient (cm2/s)

DU m :

Modified degree of unsaturation

FAME:

Fatty acid methyl ester

G ij :

Interaction parameter between component i and j

HHV:

Higher heating value (MJ/kg)

IV :

Iodine value (g/100 g)

LCSF:

Long-chain saturation factor

M :

Molecular weight of fatty acid methyl ester (g)

MUFA:

Monounsaturated fatty acid

N :

Percentage of FAME present (%)

OS:

Oxidation stability (h)

P :

Pressure (bar)

PUFA:

Polyunsaturated fatty acid

SCSF:

Straight-chain saturation factor

SFA:

Saturated fatty acid

T :

Temperature (K)

V :

Volume (cm3/mol)

y :

Mole fractions of methyl esters

Z RA :

Constant to calculate liquid density

Hv :

Latent heat of vaporization (J/mol)

ν :

Kinematic viscosity (mm2/s)

ρ :

Density (kg/L)

ω :

Acentric factor

η :

Dynamic viscosity (cP)

b :

Property at boiling point

c :

Critical property

L :

Liquid property

m :

Property of a mixture (biodiesel)

r :

Reduced property

References

  • Allen CAW, Watts KC, Ackman RG, Pegg MJ (1999) Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel 78:1319–1326

    Article  CAS  Google Scholar 

  • Al-lwayzy SH, Yusaf T (2017) Diesel engine performance and exhaust gas emissions using microalgae Chlorella protothecoides biodiesel. Renew Energy 101:690–701

    Article  CAS  Google Scholar 

  • Amit, Ghosh UK (2018) An approach for phycoremediation of different wastewaters and biodiesel production using microalgae. Environ Sci Pollut Res 25:18673–18681

    Article  CAS  Google Scholar 

  • Anand K, Sharma RP, Mehta PS (2011) A comprehensive approach for estimating thermo-physical properties of biodiesel fuels. Appl Therm Eng 31:235–242

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151

    Article  CAS  Google Scholar 

  • Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Combust Sci 24:125–164

    Article  CAS  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    Article  CAS  Google Scholar 

  • Inouye LS, Lotufo GR (2006) Comparison of macro-gravimetric and micro-colorimetric lipid determination methods. Talanta 70:584–587

    Article  CAS  Google Scholar 

  • Islam MA, Magnusson M, Brown RJ, Ayoko G, Nabi M, Heimann K (2013) Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6:5676–5702

    Article  Google Scholar 

  • Islam MA, Rahman MM, Heimann K, Nabi MN, Ristovski ZD, Dowell A, Thomas G, Feng B, von Alvensleben N, Brown RJ (2015) Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine. Fuel 143:351–360

    Article  CAS  Google Scholar 

  • Ismail HM, Ng HK, Cheng X, Gan S, Lucchini T, D’Errico G (2012) Development of thermophysical and transport properties for the CFD simulations of in-cylinder biodiesel spray combustion. Energy and Fuels 26:4857–4870

    Article  CAS  Google Scholar 

  • Kiran B, Kumar R, Deshmukh D (2014) Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers Manag 88:1228–1244

    Article  CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Krisnangkura K (1986) Simple method for estimation of cetane index of vegetable oil methyl esters. JAOCS, J Am Oil Chem Soc 63:552–553

    Article  CAS  Google Scholar 

  • Lanjekar RD, Deshmukh D (2016) A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties. Renew Sustain Energy Rev 54:1401–1411

    Article  CAS  Google Scholar 

  • Mareschal B, De Smet Y (2009) Visual PROMETHEE: developments of the PROMETHEE & GAIA multicriteria decision aid methods. IEEM 2009 - IEEE Int Conf Ind Eng Eng Manag 1646–1649.

  • Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang JW (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333

    Article  CAS  Google Scholar 

  • Mishra S, Anand K, Mehta PS (2016) Predicting the cetane number of biodiesel fuels from their fatty acid methyl ester composition. Energy & Fuels 30:10425–10434

    Article  CAS  Google Scholar 

  • Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Vich DV, de Carvalho GC, Nascimento MA (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res 6:1–13

    Article  CAS  Google Scholar 

  • Pandit PR, Fulekar MH, Karuna MSL (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ Sci Pollut Res 24:13437–13451

    Article  CAS  Google Scholar 

  • Park JY, Kim DK, Lee JP, Park SC, Kim YJ, Lee JS (2008) Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour Technol 99:1196–1203

    Article  CAS  Google Scholar 

  • Pratas MJ, Freitas S, Oliveira MB, Monteiro ŚC, Lima AS, Coutinho J̃AP (2010) Densities and viscosities of fatty acid methyl and ethyl esters. J Chem Eng Data 55:3983–3990

    Article  CAS  Google Scholar 

  • Pratas MJ, Freitas S, Oliveira MB, Monteiro ŚC, Lima ÁS, Coutinho J̃AP (2011) Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. J Chem Eng Data 56:2175–2180

    Article  CAS  Google Scholar 

  • Ra Y, Reitz RD, Mcfarlane J, Daw SC (2008) Effects of fuel physical properties on diesel engine combustion using diesel and bio-diesel fuels. SAE Int. J. Fuels Lubr. 1(1):703–718

    Article  Google Scholar 

  • Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111. https://doi.org/10.1016/j.fuel.2011.06.070

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268. https://doi.org/10.1016/j.biortech.2008.06.039

    Article  CAS  Google Scholar 

  • Reid RC, Prausnitz JM, Sherwood TK (1987) The properties of gases & liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Ríos SD, Castañeda J, Torras C, Farriol X, Salvadó J (2013) Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production. Bioresour Technol 133:378–388

    Article  Google Scholar 

  • Ruangsomboon S (2012) Bioresource technology effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol 109:261–265

    Article  CAS  Google Scholar 

  • Schönborn A, Ladommatos N, Williams J, Allan R, Rogerson J (2009) The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion. Combust Flame 156:1396–1412

    Article  Google Scholar 

  • Shirazi MMA, Kargari A, Tabatabaei M, Mostafaeid B, Akia M, Barkhi M, Shirazi MJA (2013) Acceleration of biodiesel-glycerol decantation through NaCl-assisted gravitational settling: a strategy to economize biodiesel production. Bioresour Technol 134:401–406

    Article  CAS  Google Scholar 

  • Stansell GR, Gray VM, Sym SD (2012) Microalgal fatty acid composition: Implications for biodiesel quality. J Appl Phycol 24:791–801

  • Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Hadavand Mirzaei H, Mirzajanzadeh M, Malekzadeh Shafaroudi S, Bakhtiari S (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267

    Article  Google Scholar 

  • Yuan W, Hansen AC, Zhang Q et al (2003) Predicting the physical properties of biodiesel for combustion modeling. Trans ASAE 46:1487–1493

    Article  Google Scholar 

  • Živković S, Veljković M (2018) Environmental impacts the of production and use of biodiesel. Environ Sci Pollut Res 25:191–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritunesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, S., Bala, K. & Kumar, R. Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production. Environ Sci Pollut Res 26, 24462–24473 (2019). https://doi.org/10.1007/s11356-019-05692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05692-z

Keywords

Navigation