Skip to main content
Log in

Application of progressive freezing on forward osmosis draw solute recovery

  • Water Environmental Pollution and State of the Art Treatment Technologies
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Progressive freezing is a solvent purification technology with low energy requirements and high concentration efficiency. Although these advantages make it a promising technology, the technique has never been explored for draw solution recovery for forward osmosis (FO). Hence, in this study, the progressive freezing process was used to concentrate three common diluted draw solutions: NaCl, MgCl2, and EDTA-2Na with different ice front speeds, stirring rates, and initial draw solution concentrations. Effective partition and intrinsic partition constants were also evaluated. The results reveal that the freezing process can achieve a draw solution recovery rate of 99.73%, 99.06%, and 98.65% with NaCl, MgCl2, and EDTA-2Na, respectively, using an ice front speed of 0.5 cm/h, a stirring rate of 2.62 m/s, and 30% of percentage of ice phase. Higher concentration efficiency for NaCl and MgCl2 was achieved due to the high solubility of NaCl and MgCl2 increased solute diffusion into the liquid phase solutions. The concentration factors for all three draw solutions exceeded 1.9, indicating that the draw solutes could be reused for the FO process. In addition, the two mass transfer coefficients depended on the ice front speed and the stirring rates were also obtained for scaling up the experiment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiao-Shing Chen.

Additional information

Responsible editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, H.Q., Nguyen, T.X.Q., Chen, SS. et al. Application of progressive freezing on forward osmosis draw solute recovery. Environ Sci Pollut Res 27, 34664–34674 (2020). https://doi.org/10.1007/s11356-019-06079-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06079-w

Keywords

Navigation