Skip to main content
Log in

Nanocomposite material from TiO2 and activated carbon for the removal of pharmaceutical product sulfamethazine by combined adsorption/photocatalysis in aqueous media

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work was dedicated to the elaboration of new composite materials based on activated carbon and titanium oxide as an ecological solution for the cleaning of water contaminated with pharmaceutical pollutants. Such new composite materials allowed the combining of adsorption and photocatalytic process, which allows a cleaning process that is low cost making them promising materials. The functionalization of the surface of activated carbon (AC) by TiO2 nanoparticles forms the core of the nanocomposite material. This was accomplished using sol-gel process with molar ratios Rn (nTi/nAC) in the range of 1/10 to 7/10 followed by a calcination step (400 °C, N2, 2 h). Using various characterization techniques, AC surface functionalization was confirmed and the formation of a TiO2 coating on the AC was noticed with TiO2 under its unique anatase crystallographic form. The study of adsorption and photocatalytic degradation of the sulfamethazine antibiotic demonstrated that the most photoactive nanocomposite corresponds to the one with Rn = 0.5. Freundlich model was proved to be a perfect fit with the experimental results stating that the adsorption is of multilayer nature on the surface of the adsorbent and with interactions between the pollutants adsorbed on its surface. The photocatalytic degradation of the remaining pharmaceutical pollutant in the solution was evidenced and essentially occurred through the involvement of hydroxyl radicals formed by the excitation of the photocatalyst. The formation of the photoproducts analyzed by the LC/MS technique implies the splitting of the sulfonamide bridge, and by the hydroxylation of the aromatic ring and the pyrimidine group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamu H, Shand M, Taylor RSF, Manyar HG, Anderson JA (2018) Use of carbon-based composites to enhance performance of TiO2 for the simultaneous removal of nitrates and organics from aqueous environments. Environ Sci Pollut Res 25:32001–32014

    CAS  Google Scholar 

  • Alalm MG, Tawfik A, Ookawara S (2017) Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process. Appl Water Sci 7:375–382

    Google Scholar 

  • ALOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Materials 5:2874–2902

    CAS  Google Scholar 

  • Ameta S, Ameta R (2018) Advanced oxidation processes for wastewater treatment: emerging green chemical technology. 135–175. https://doi.org/10.1016/C2016-0-00384-4

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    CAS  Google Scholar 

  • Ao CH, Lee SC (2003) Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl Catal B Environ 44:191–205

    CAS  Google Scholar 

  • Aryal S, Kim CK, Kim K-W, Khil M-S, Kim H-Y (2008) Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater Sci Eng C 28:75–79

    CAS  Google Scholar 

  • Benoit-Marquie F, Wilkenhoner U, Simon V, Braun AM, Oliveros E, Maurette MT (2000) VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst, part I: 1-butanol and 1-butylamine. J Photochem Photobiol A Chem 132:225–232

    CAS  Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications – a review. J Chem Technol Biotechnol 77:102–116

    CAS  Google Scholar 

  • Broekhoff JCP (1979) Mesopore determination from nitrogen sorption isotherms: fundamentals, scope, limitations. In: Studies in surface science and catalysis. pp 663–684

  • Calgon Carbon Corporation (1999) Information bulletin: activated carbon- what is it, how does it work.IB-101312/99

  • Dabrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon--a critical review. Chemosphere 58:1049–1070

    CAS  Google Scholar 

  • Danilo S, Raffaele M, Sixto M, Pilar FI, Di S (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B Environ 170–171:90–123

    Google Scholar 

  • Fukahori S, Fujiwara T (2015) Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using TiO2. J Environ Manag 157:103–110

    CAS  Google Scholar 

  • Genin B, Chauvin C, Ménard F (2003) Cours d’eau et indices biologiques IBGN, Éducagri éditions, Dijon,

  • Gomathi Devi L, Narasimha Murthy B (2008) Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light. Catal Lett 125:320–330

    Google Scholar 

  • Guo C, Xu J, Wang S, Zhang Y, Hea Y, Li X (2013) Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdatephotocatalyst. Catal Sci Technol 3:1603–1611

    CAS  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, HoltenLützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment--a review. Chemosphere 36:357–393

    Google Scholar 

  • He HY, He Z, Shen Q (2018) Efficient hydrogen evolution catalytic activity of graphene/metallic MoS2 nanosheet heterostructures synthesized by a one-step hydrothermal process. Int J Hydrog Energy 48:21835–21843

    Google Scholar 

  • He HY, He Z, Shen Q (2019) Reduced graphene oxide/metallic MoSe2:Cu nanosheet nanostructures grown by a chemical process for highly efficient water splitting. Mater Res Bull 111:183–190

    CAS  Google Scholar 

  • Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    CAS  Google Scholar 

  • Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices--a review. J Environ Manag 92:2304–2347

    CAS  Google Scholar 

  • Inagaki M, Kojin F, Tryba B, Toyoda M (2005) Carbon-coated anatase: the role of the carbon layer for photocatalytic performance. Carbon 43:1652–1659

    CAS  Google Scholar 

  • Jamil TS, Ghaly MY, Fathy NA, Abdel-Halim TA, Osterlund L (2012) Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Sep Purif Technol 98:270–279

    CAS  Google Scholar 

  • Li J, Jin Z (2009) Effect of hypersaline aniline-containing pharmaceutical wastewater on the structure of activated sludge-derived bacterial community. J Hazard Mater 172:432–438

    CAS  Google Scholar 

  • Li G, Zhang S, Yu J (2011) Facile synthesis of single-phase TiO2 nanocrystals with high photocatalytic performance. J Am Ceram Soc 94:4112–4115

    CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    CAS  Google Scholar 

  • Liu C, Li Y, Xu P, Zeng M, Li M (2015) Controlled synthesis of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance. Mater Chem Phys 149–150:69–76

    Google Scholar 

  • Lu P-J, Lin H-C, Yu W-T, Chern J-M (2011) Chemical regeneration of activated carbon used for dye adsorption. Journal of the Taiwan Institute of Chemical Engineers 42:305–311. https://doi.org/10.1016/j.jtice.2010.06.001

  • Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile? - model studies on epitaxial TiO2 films. Sci Rep 4:4043

    Google Scholar 

  • Mamba G, Mbianda XY, Mishra AK (2014) Gadolinium nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites for degradation of methylene blue in water under simulated solar light. Environ Sci Pollut Res Int 21:5597–5609

    CAS  Google Scholar 

  • Matos J, Montaña R, Rivero E (2015) Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV–vis irradiation. Environ Sci Pollut Res 22:784–791. https://doi.org/10.1007/s11356-014-2832-9

    Article  CAS  Google Scholar 

  • McCullagh C, Robertson JMC, Bahnemann DW, Robertson PKJ (2007) The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Res Chem Intermed 33:359–375

    CAS  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108:1–35

    CAS  Google Scholar 

  • Monteiro Paschoal FM, Nunez L, de Vasconcelos Lanza MR, Boldrin Zanoni MV (2013) Nitrate removal on a cu/Cu2O photocathode under UV irradiation and bias potential. J Adv Oxid Technol 16:63

    Google Scholar 

  • Ohsaka T, Yamaoka S, Shimomura O (1979) Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2). Solid State Commun 30:345–347

    CAS  Google Scholar 

  • Onundi YB, Mamun AA, Khatib MFA, Ahmed YM (2010) Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Technol 7:751–758

    CAS  Google Scholar 

  • Palacio M, Villabrille PI, Romanelli GP, Vázquez PG, Cáceres CV (2009) Ecofriendly liquid phase oxidation with hydrogen peroxide of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone catalyzed by TiO2–CeO2 mixed xerogels. Appl Catal A Gen 359:62–68

    CAS  Google Scholar 

  • Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42:5480–5485

    CAS  Google Scholar 

  • Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41:811–821

    CAS  Google Scholar 

  • Periša M, Babić S, Škorić I, Fromel T, Knepper TP (2013) Photodegradation of sulfonamides and their N4-acetylated metabolites in water by simulated sunlight irradiation: kinetics and identification of photoproducts. Environ Sci Pollut Res 20:8934–8946

    Google Scholar 

  • Pichat P, Disdier J, Hoang-Van C, Mas D, Goutailler G, Gaysse C (2000) Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal Today 63:363–369

    CAS  Google Scholar 

  • Piecha M, Sarakha M, Trebše P (2010) Photocatalytic degradation of cholesterol-lowering statin drugs by TiO2-based catalyst. Kinetics, analytical studies and toxicity evaluation. J Photochem Photobiol A Chem 213:61–69

    CAS  Google Scholar 

  • Rafqah S, Wong-Wah-Chung P, Nelieu S, Einhorn J, Sarakha M (2006) Phototransformation of triclosan in the presence of TiO2 in aqueous suspension: mechanistic approach. Appl Catal B Environ 66:119–125

    CAS  Google Scholar 

  • Rafqah S, Seddigi ZS, Ahmed SA, Danish E, Sarakha M (2015) Use of quadrupole time of flight mass spectrometry for the characterization of transformation products of the antibiotic sulfamethazine upon photocatalysis with Pd-doped ceria-ZnO nanocomposite. J Mass Spectrom 50:298–307

    CAS  Google Scholar 

  • Riassetto D, Holtzinger C, Messaoud M, Briche S, Berthomé G, Roussel F, Rapenne L, Langlet M (2009) Mechanisms involved in the platinization of sol–gel-derived TiO2 thin films. J Photochem Photobiol A Chem 202:214–220

    CAS  Google Scholar 

  • Rincón A-G, Pulgarin C (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B Environ 49:99–112

    Google Scholar 

  • Salih HH, Sorial GA, Patterson CL, Sinha R, Krishnan E-R (2012) Removal of trichloroethylene by activated carbon in the presence and absence of TiO2 nanoparticles. Water Air Soil Pollut 223:2837–2847

    CAS  Google Scholar 

  • Sharma VK (2008) Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): kinetics assessment. Chemosphere 73:1379–1386

    CAS  Google Scholar 

  • Sim W-J, Lee J-W, Oh J-E (2010) Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ Pollut 158:1938–1947

    CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. 57:603–619. https://doi.org/10.1351/pac198557040603

  • Sousa Da Silva E, Sarakha M, Burrows HD, Wong-Wah-Chung P (2017) Decatungstate anion as an efficient photocatalytic species for the transformation of the pesticide 2-(1-naphthyl)acetamide in aqueous solution. J Photochem Photobiol A Chem 334:61–73

    CAS  Google Scholar 

  • Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    CAS  Google Scholar 

  • Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci) 42:357–361

    Google Scholar 

  • Tryba B, Morawski AW, Inagaki M (2003) A new route for preparation of TiO2-mounted activated carbon. Appl Catal B Environ 46:203–208

    CAS  Google Scholar 

  • Uchida H, Itoh S, Yoneyama H (1993) Photocatalytic decomposition of propyzamide using TiO2 supported on activated carbon. Chem Lett 22:1995–1998

    Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review. Sci Total Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  CAS  Google Scholar 

  • Villa RD, Trovó AG, Nogueira RFP (2010) Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. J Hazard Mater 174:770–775

    CAS  Google Scholar 

  • Wang S, Zhou S (2011) Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J Hazard Mater 185:77–85

    CAS  Google Scholar 

  • Wang W, Silva CG, Faria JL (2007) Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Catal B Environ 70:470–478

    CAS  Google Scholar 

  • Wang H, Wang H-L, Jiang W-F, Li Z-Q (2009a) Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res 43:204–210

    CAS  Google Scholar 

  • Wang X, Liu Y, Hu Z, Chen Y, Liu W, Zhao G (2009b) Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. J Hazard Mater 169:1061–1067

    CAS  Google Scholar 

  • Yoneyama H, Torimoto T (2000) Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catal Today 58(2):133–140

    CAS  Google Scholar 

  • Zhang H, Banfield JF (2000) Phase transformation of nanocrystallineanatase-to-rutile via combined interface and surface nucleation. J Mater Res 15:437–448

    CAS  Google Scholar 

  • Zhang X, Lei L (2008) Effect of preparation methods on the structure and catalytic performance of TiO(2)/AC photocatalysts. J Hazard Mater 153:827–833

    CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out in the technological platforms of the MAScIR Foundation with the support of Mr. Chakib Tilsaghani and his team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Rafqah.

Additional information

Responsible editor: Suresh Pillai

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 332 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briche, S., Derqaoui, M., Belaiche, M. et al. Nanocomposite material from TiO2 and activated carbon for the removal of pharmaceutical product sulfamethazine by combined adsorption/photocatalysis in aqueous media. Environ Sci Pollut Res 27, 25523–25534 (2020). https://doi.org/10.1007/s11356-020-08939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08939-2

Keywords

Navigation