Skip to main content
Log in

Evaluation of nitrogen removal and the microbial community in a submerged aerated biological filter (SABF), secondary decanters (SD), and horizontal subsurface flow constructed wetlands (HSSF-CW) for the treatment of kennel effluent

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To ensure microbial activity and a reaction equilibrium with efficiency and energy saving, it is important to know the factors that influence microbiological nitrogen removal in wastewater. Thus, it was investigated the microorganisms and their products involved in the treatment of kennel effluents operated with different aeration times, phase 1 (7 h of continuous daily aeration), phase 2 (5 h of continuous daily aeration), and phase 3 (intermittent aeration every 2 h), monitoring chemical and physical parameters weekly, monthly microbiological, and qualitative and quantitative microbiological analyzes at the end of each applied aeration phase. The results showed a higher mean growth of nitrifying bacteria (NB) (106) and denitrifying bacteria (DB) (1022) in phase with intermittent aeration, in which better total nitrogen (TN) removal performance, with 33%, was achieved, against 21% in phase 1 and 17% in phase 2, due to the longer aeration time and lower carbon/nitrogen ratio (15.7), compared with the other phases. The presence of ammonia-oxidizing bacteria (AOB), the genus Nitrobacter nitrite–oxidizing bacteria (NOB), and DB were detected by PCR with specific primers at all phases. The analysis performed by 16S-rRNA DGGE revealed the genres Thauera at all phases; Betaproteobacteria and Acidovorax in phase 3; Azoarcus in phases 2 and 3; Clostridium, Bacillus, Lactobacillus, Turicibacter, Rhodopseudomonas, and Saccharibacteria in phase 1, which are related to the nitrogen removal, most of them by denitrifying. It is concluded that, with the characterization of the microbial community and the analysis of nitrogen compounds, it was determined, consistently, that the studied treatment system has microbiological capacity to remove TN, with the phase 3 aeration strategy, by simultaneous nitrification and denitrification (SND). Due to the high density of DB, most of the nitrification occurred by heterotrophic nitrification-aerobic. And denitrification occurred by heterotrophic and autotrophic forms, since the higher rate of oxygen application did not harm the DB. Therefore, the aeration and carbon conditions in phase 3 favored the activity of the microorganisms involved in these different routes. It is considered that, in order to increase autotrophic nitrification-aerobic, it is necessary to exhaust the volume of sludge in the secondary settlers (SD), further reducing the carbon/nitrogen ratio, through more frequent cleaning, whose periodicity should be the object of further studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgments

The authors would like to thank the DESA/UFMG Water and Effluent Microbiology Laboratory, Francisco de Assis Park, FAPEMIG, CAPES and DRS/UFLA.

Funding

This work was funded by Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) (grant number TEC APQ 02879/13) and Coordenação de Aperfeiçoamento de Pessoal de nível Superior (CAPES) through a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciene Alves Batista Siniscalchi.

Additional information

Responsible Editor: Alexandros Stefanakis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis Souza, A., Batista, A.M.M., Leal, C.D. et al. Evaluation of nitrogen removal and the microbial community in a submerged aerated biological filter (SABF), secondary decanters (SD), and horizontal subsurface flow constructed wetlands (HSSF-CW) for the treatment of kennel effluent. Environ Sci Pollut Res 27, 43125–43137 (2020). https://doi.org/10.1007/s11356-020-10263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10263-8

Keywords

Navigation