Skip to main content
Log in

Silicon nutrition modulates arsenic-inflicted oxidative overload and thiol metabolism in wheat (Triticum aestivum L.) seedlings

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A hydroponic experiment was conducted to establish the response of exogenous silicon [Si] in alleviating arsenate [As (V)] prompted alterations on antioxidant enzyme activities and thiol metabolism in wheat (Triticum aestivum L. cv PBW 343) seedlings. Objective of the work was to validate the hypothesis whether silicate may alleviate arsenate-provoked oxidative stress in wheat through diverse metabolic pathways with an endeavor to improve food safety and health. Arsenate treatment significantly enhanced oxidative stress and was associated with modifications in non-enzymatic and enzymatic antioxidants. The activities of arsenate reductase [AR] and the enzymes related to thiol metabolism revealed dose-dependent enhancements with increase in arsenate along with enhanced production of phytochelatins [PCs] in the cultivar. Simultaneous supplementations of silicate with arsenate in the nutrient formulation reduced arsenate uptake along with arsenate reductase activity and consequently lowered arsenite [As (III)] accumulation. The antioxidative defense was upregulated and phytochelatin production was lowered causing an appreciable revival from the arsenate-imposed consequences that eventually augmented growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Lateef AM, Mohamed RA, Mahmoud HH (2013) Determination of arsenic (III) and (V) species in some environmental samples by atomic absorption spectrometry. Adv Chem Sci 2(4):110–113 ACS02524110113

    Google Scholar 

  • Abedin MJ, Cresser M, Meharg A, Feldmann J, Howells JC (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L). Environ Sci Technol 36:962–968

    Article  CAS  Google Scholar 

  • Ando K, Honma M, Chiba S, Tahara S, Mizutani JK (1988) Glutathione transferase from Mucor javanicus. Agric Biol Chem 52:135–139

    CAS  Google Scholar 

  • Ang HH, Lee KL (2005) Analysis of mercury in Malaysian herbal preparations. J Microbiol Biotechnol Res 4:31–36

    Google Scholar 

  • Backer H, Frank O, De Angells B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or ocetylaned tocopherol. Nutr Rep Int 21:531–536

    Google Scholar 

  • Bashir H, Ibrahim MM, Bagheri R, Ahmad J, Arif IA, Baig MA, Qureshi MI (2015) Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants 7:plv001. https://doi.org/10.1093/aobpla/plv001

    Article  CAS  Google Scholar 

  • Batista BL, Nigar M, Mestrot A, Rocha BA, Barbosa F Jr, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479. https://doi.org/10.1093/jxb/eru018

    Article  CAS  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39(1):1–6. https://doi.org/10.1590/1678-4685-GMB-2015-0109

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–817

    Article  Google Scholar 

  • Chooto P, Wararattananurak P, Kangkamano T, Innuphata C, Sirinawin W (2015) Determination of inorganic arsenic species by hydride generation atomic absorption spectrophotometry and cathodic stripping voltammetry. Sci Asia 41:187–197. https://doi.org/10.2306/scienceasia1513-1874.2015.41.187

    Article  CAS  Google Scholar 

  • Choudhury B, Mitra S, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate. Physiol Mol Biol Pla 16:59–68. https://doi.org/10.1007/s12298-010-0008-8

    Article  CAS  Google Scholar 

  • Choudhury B, Chowdhury S, Biswas AK (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact 6(1):15–24. https://doi.org/10.1080/17429140903487552

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK (2019) Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. Plant Physiol Biochem 136:76–91. https://doi.org/10.1016/j.plaphy.2018.12.026

    Article  CAS  Google Scholar 

  • Dhankher OP (2005) Arsenic metabolism in plants: an inside story. New Phytol 168:503–505

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251. https://doi.org/10.1016/j.jhazmat.2015.06.008

    Article  CAS  Google Scholar 

  • Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469. https://doi.org/10.1104/pp.104.057422

    Article  CAS  Google Scholar 

  • Dwivedi S, Kumar A, Mishra S, Sharma P, Sinam G, Bahadur L, Goyal V, Jain N, Tripathi RD (2020) Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Environ Sci Pollut Res 27:24025–24038. https://doi.org/10.1007/s11356-020-08663-x

    Article  CAS  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dörr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55(2):162–167

    Article  CAS  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    CAS  Google Scholar 

  • Gasper T, Laccoppe J (1968) The effect of CCC and AMO-1618 on growth, catalase, peroxidase, IAA oxidase activity of young barley seedlings. Physiol Plant 21:1104–1109

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212. https://doi.org/10.1016/j.plaphy.2013.05.032

    Article  CAS  Google Scholar 

  • Greger M, Bergqvist C, Sandhi A, Landberg T (2015) Influence of silicon on arsenic uptake and toxicity in lettuce. J Appl Bot Food Qual 88:234–240. https://doi.org/10.5073/JABFQ.2015.088.034

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596. https://doi.org/10.1007/s10646-013-1050-4

    Article  CAS  Google Scholar 

  • Hettick BE, Cañas-Carrell JE, French AD, Klein DM (2015) Arsenic: a review of the element’s toxicity, plant interactions, and potential methods of remediation. J Agric Food Chem 63:7097–7107. https://doi.org/10.1021/acs.jafc.5b02487

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175. https://doi.org/10.3390/ijms13033145

    Article  CAS  Google Scholar 

  • Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8:10301. https://doi.org/10.1038/s41598-018-28712-3

    Article  CAS  Google Scholar 

  • Kostic L, Nikolic N, Bosnic D, Samardic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419:447–455 10..1007/s11104-017-3364-0

    Article  CAS  Google Scholar 

  • Kumar N, Mallick S, Yadava RN, Singh AP, Sinha S (2013) Co-application of selenite and phosphate reduces arsenite uptake in hydroponically grown rice seedlings: toxicity and defence mechanism. Ecotoxicol Environ Saf 91:171–179. https://doi.org/10.1016/j.ecoenv.2013.01.027

    Article  CAS  Google Scholar 

  • Kumar A, Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicol 23:1153–1116. https://doi.org/10.1007/s10646-014-1257-z

    Article  CAS  Google Scholar 

  • Li N, Wang J, Song WY (2015) Arsenic uptake and translocation in plants. Plant Cell Physiol 0(0):1–10. https://doi.org/10.1093/pcp/pcv143

  • Liu C, Lu W, Ma Q, Ma C (2017) Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. J Plant Nutr 40:2458–2467. https://doi.org/10.1080/01904167.2017.1380817

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • McCarty KM, Hanh HT, Kim KW (2011) Arsenic geochemistry and human health in. South East Asia Rev Environ Health 26(1):71–78 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128386

    CAS  Google Scholar 

  • Mishra BK, Dubey CS, Shukla DP, Bhattacharya P, Usham AL (2014) Concentration of arsenic by selected vegetables cultivated in the Yamuna flood plains (YFP) of Delhi, India. Environ Earth Sci 72(9):3281–3291

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Esteba E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol 215:1–37

    Google Scholar 

  • Mukherjee SP, Chaudhuri MA (1983) Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Olliver M (1967) Ascorbic acid estimation. In: Sebrell WH, Harris RS (eds) The vitamins VI. Academic Press, New York, p 338

    Google Scholar 

  • Pontigo S, Godoy K, Jiménez H, Gutiérrez-Moraga A, Mora ML, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front Plant Sci 8:642. https://doi.org/10.3389/fpls.2017.00642

    Article  Google Scholar 

  • Rahaie M, Xue GP, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Vahdati K, Leslie C (eds) Abiotic stress - plant responses and applications in agriculture. InTech, Rijeka, pp 367–385

    Google Scholar 

  • Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2015) Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Res Int 2015:1–12. https://doi.org/10.1155/2015/340812

    Article  CAS  Google Scholar 

  • Rao ASVC, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stresses in plants. Springer, Berlin: Verlag, pp 111–147. https://doi.org/10.1007/978-3-540-76326-0_6

  • Rastogi A, Tripathi DKT, Yadav S, Chauhan DK, Živčak M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3Biotech 9:90. https://doi.org/10.1007/s13205-019-1626-7

    Article  Google Scholar 

  • Rausch T, Wachter A (2005) Sulphur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10(10):503–509

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxicfication. FEBS Lett 529:86–92

    Article  CAS  Google Scholar 

  • Schulz H, Härtling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins—comparison between plants with varying As sensitivities. Plant Soil 303:275–287. https://doi.org/10.1007/s11104-007-9507-y

    Article  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bond and non-protein sulfhydryl groups in tissue with Ell-man’s reagent. Anal Biochem 25:192–205

    Article  CAS  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67(3):447–453. https://doi.org/10.2478/s11756-012-0024-y

    Article  CAS  Google Scholar 

  • Shi GL, Zhu S, Meng JR, Qian M, Yang N, Lou LQ, Cai QS (2015) Variation in arsenic accumulation and translocation among wheat cultivars: the relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings. J Hazard Meter 289:190–196. https://doi.org/10.1016/j.jhazmat.2015.02.045

    Article  CAS  Google Scholar 

  • Shi GL, Lou LQ, Li DJ, Hu ZB, Cai QS (2017) Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction. Chemosphere 175:192–199. https://doi.org/10.1016/j.chemosphere.2017.02.017

    Article  CAS  Google Scholar 

  • Sil P, Das P, Biswas AK (2018) Silicon induced mitigation of TCA cycle and GABA synthesis in arsenic stressed wheat (Triticum aestivum L.) seedlings. S Afr J Bot 119:340–352

    Article  CAS  Google Scholar 

  • Sil P, Das P, Biswas AK (2019a) Impact of exogenous silicate amendments on nitrogen metabolism in wheat seedlings subjected to arsenate stress. Silicon 12:535–545. https://doi.org/10.1007/s12633-019-00158-w

    Article  CAS  Google Scholar 

  • Sil P, Das P, Biswas S, Mazumdar A, Biswas AK (2019b) Modulation of photosynthetic parameters, sugar metabolism, polyamine and ion contents by silicon amendments in wheat (Triticum aestivum L.) seedlings exposed to arsenic. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04896-7

  • Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth ReguL 53:65–73. https://doi.org/10.1007/s10725-007-9205-z

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, Dhankher OP, Tripathi RD (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272. https://doi.org/10.3389/fpls.2015.01272

    Article  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis-(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  Google Scholar 

  • Sneller FEC, Van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC (2000) Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane. J Agric Food Chem 48:4014–4019. https://doi.org/10.1021/jf9903105

    Article  CAS  Google Scholar 

  • Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia. 66(2):195–204

    Article  CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa – an angiospermic parasite. J plant Physiol 161(6):665–674. https://doi.org/10.1078/0176-1617-01274

    Article  CAS  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The Ascorbate glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483. https://doi.org/10.3390/ijms13044458

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103. https://doi.org/10.1016/j.ecoleng.2012.12.057

    Article  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550. https://doi.org/10.1105/tpc.10.9.1539

    Article  CAS  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432. https://doi.org/10.3390/ijms14047405

    Article  CAS  Google Scholar 

  • Zhu YG, Geng CN, Tong YP, Smith SE, Smith FA (2006) Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines. Ann Bot 98:631–636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the infrastructural assistance provided by the Centre of Advanced Study, Department of Botany, University of Calcutta (UGC-CAS Phase VII), DST-FIST and DBT-IPLS facility for completion of the work. The authors are thankful to the Central Instrument Facility, Bose Institute, Kolkata, India for providing the HPLC facilities. The authors also acknowledge the assistance of Prof. Uttam Bandopadhyay, Department of Statistics, University of Calcutta, for statistical analyses.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. However, financial assistance to A.K.B. was from the University Grants Commission, New Delhi, for completion of the work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed significantly to the research article. P.S. conducted the experiments, compiled and analyzed data, and prepared draft of the manuscript. A.K.B. conceived the idea, designed experiments, and finalized the manuscript. Both authors equally approve the publication.

Corresponding author

Correspondence to Asok K. Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4157 kb)

ESM 2

(DOCX 25 kb)

ESM 3

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, P., Biswas, A.K. Silicon nutrition modulates arsenic-inflicted oxidative overload and thiol metabolism in wheat (Triticum aestivum L.) seedlings. Environ Sci Pollut Res 27, 45209–45224 (2020). https://doi.org/10.1007/s11356-020-10369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10369-z

Keywords

Navigation